img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Distribution Characteristics of Soil Salts in the Lower Reaches of Heihe River, Northwest China

  • Zhao Yu ,
  • Feng Qi ,
  • Li Huiya
Expand
  • 1. Key Laboratory of Eco-hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resource, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. College of Agriculture and Commerce/Key Laboratory for Ecology and Environment of River Wetlands in Shaanxi Province, Weinan Normal Unversity, Weinan 714099, Shannxi, China

Received date: 2016-03-28

  Revised date: 2016-08-26

  Online published: 2017-11-20

Abstract

Based on the soil salt research data, combined with the hierarchical clustering method and geostatistics method, we analyzed the spatial variation characteristics of soil salinity of topsoil to reveal the degree and status of soil salinization in lower reaches of Heihe River. The soil salinity showed clear surface accumulation characteristics. The soil salinity and ions content have a strong variability, with the variation coefficient changing from 0.42 to 1.99. The main type of soil salinization in the lower reaches of Heihe River is chloride sulfate. The salinization is severe, and salinized soil proportion is as high as 42.87%. From the variation characteristics of soil salinity in the horizontal direction, we know that the soil salinity of topsoil has a strong spatial correlation. The optimal model of variation function is spherical model. Soil salinity was scatted in the study area. Overall, low soil salinity was distributed in the Ejina Oasis and along the river bed, and high salinity was distributed in West Juyan Lake and Gurinai area. From the variation characteristics of soil salinity in the vertical direction, we know that soil salinity profile in the study are can be divided into 4 types, in particular, surface accumulation profiles, equably distribution profiles, oscillation profiles, and bottom accumulation profiles.

Cite this article

Zhao Yu , Feng Qi , Li Huiya . Distribution Characteristics of Soil Salts in the Lower Reaches of Heihe River, Northwest China[J]. Journal of Desert Research, 2017 , 37(6) : 1196 -1203 . DOI: 10.7522/j.issn.1000-694X.2016.00127

References

[1] 李新国,李和平,任云霞,等.开都河流域下游绿洲土壤盐渍化特征及其光谱分析[J].土壤通报,2012,43(1):166-169.
[2] 袁泽,丁建丽,牛增懿,等.基于GF-1遥感影像的艾比湖区域田间尺度土壤盐渍化监测方法[J].中国沙漠,2016,36(4):1070-1078.
[3] 丁建丽,陈文倩,陈芸.干旱区土壤盐渍化灾害预警——以渭-库绿洲为例[J].中国沙漠,2016,36(4):1079-1086.
[4] 张同娟,杨劲松,刘广明,等.基于电磁感应仪的河口地区底聚型盐分剖面特征的解译[J].农业工程学报,2009,25(11):103-113.
[5] Florinsky I V,Eilers R G,Manning G R,et al.Prediction of soil properties by digital terrain modeling[J].Environmental Modelling and Software,2002,17(3):295-311.
[6] 季荣,李典谟,谢宝瑜,等.基于沿海蝗区飞蝗卵块分布格局的土壤空间异质性[J].生态学报,2007,27(3):1019-1025.
[7] Zhou X,Fang B,Wan L,et al.Occurrence of soluble salts and moisture in the unsaturated zone and groundwater hydrochemistry along the middle and lower reaches of the Heihe River in northwest China[J].Environmental Geology,2006,50:1085-1093.
[8] 刘蔚,王忠静,席海洋.黑河下游水土理化性质变化及生态环境意义[J].冰川冻土,2008,30(4):88-96.
[9] 高进长,苏永红,席海洋.黑河下游河流沿岸土壤养分和盐分的研究[J].水土保持学报,2012,26(5):94-99.
[10] Chen X H,Duan Z H,Luo T F.Changes in soil quality in the critical area of desertification surrounding the Ejina Oasis,Northern China[J].Environmental Earth Sciences,2014,72:2643-2654.
[11] 鱼腾飞,冯起,刘蔚,等.黑河下游土壤水盐对生态输水的响应及其与植被生长的关系[J].生态学报,2012,32(22):7009-7017.
[12] 刘蔚,王涛,苏永红,等.黑河下游土壤和地下水盐分特征分析[J].冰川冻土,2005,27(6):890-898.
[13] 张小由,龚家栋,周茂先.黑河下游绿洲NDVI对地下水位变化的响应研究[J].干旱区地理,2008,31(3):379-388.
[14] 贾艳红,赵传燕,南忠仁.黑河下游地下水波动带土壤盐分空间变异特征分析[J].干旱区地理,2008,31(3):379-388.
[15] 席海洋,冯起,司建华,等.黑河下游绿洲NDVI对地下水位变化的响应研究[J].中国沙漠,2013,33(2):574-582.
[16] Guo Q L,Feng Q,Li J L.Environmental changes after ecological water conveyance in the lower reaches of Heihe River,northwest China[J].Environmental Geology,2009,58:1387-1396.
[17] Su Y H,Feng Q,Zhu G F,et al.Identification and evolution of groundwater chemistry in the Ejin sub-basin of the Heihe River,northwest China[J].Pedosphere,2007,17:331-342.
[18] 冯起,司建华,席海洋,等.黑河下游生态水需求与生态水量调控[M].北京:科学出版社,2015.
[19] 张继光,陈洪松,苏以荣,等.喀斯特地区典型峰丛洼地表层土壤水分空间变异及合理取样数研究[J].水土保持学报,2006,20(2):114-118.
[20] Cochran W C.Sampling techniquess[M].New York,USA:John Wiley and Sons,Inc.,1977.
[21] 张朝生,章申,张立成,等.长江水系河流沉积物重金属元素含量的计算方法研究[J].环境科学学报,1995,15(3):257-264.
[22] 甘海华,彭凌云.江门市新会区耕地土壤养分空间变异特征[J].应用生态学报,2005,16(8):1437-1442.
[23] 刘广明,吕真真,杨劲松,等.典型绿洲区土壤盐分的空间变异特征[J].农业工程学报,2012,28(16):100-107.
[24] 刘进,许光泉,梁修雨.淮北平原地下水水质空间分布特征分析[J].地下水,2009,31(41):18-22.
[25] Myers D B,Kitchen N R,Sudduth K A,et al.Peak functions for modeling high resolution soil profile data[J].Geoderma,2011,16(1):73-84.
[26] Mirkin B.Cluster Analysisfor Researchers[J].Journal of Classification,1970,21:279-283
[27] Adams S,Titus R,Pietersen K,et al.Hydrological chearacteristics of aquifers near Sutherland in the Western Kauoo,South Africa[J].Journal of Hydrology,2001,24:91-93.
[28] 白军红,欧阳华,邓伟,等.向海沼泽湿地土壤氮素的空间分布格局[J].地理研究,2004,23(5):614-622.
[29] 李小玉,宋冬梅,肖笃宁.石羊河下游民勤绿洲地下水矿化度的时空变异[J].地理学报,2005,60(2):319-327.
[30] 雷志栋,杨诗秀,许志荣,等.土壤特性空间变异性初步研究[J].水利学报,1985,16(9):10-21.
[31] 王玉刚,郑新军,李彦.干旱区不同景观单元土壤盐分的变化特征[J].生态学杂志,2009,28(11):2293-2298.
[32] 胡伟,邵明安,王全九.黄土高原退耕坡地土壤水分空间变异特征[J].水科学进展,2006,17(1):74-81.
[33] 许尔琪,张红旗,许咏梅.伊犁新垦区土壤盐分垂直分异特征研究[J].干旱区资源与环境,2013,27(7):71-77.
[34] 樊仙,刘淑英,王平,等.疏勒河灌区土壤剖面盐分分布及组成特征分析[J].西北农业学报,2009,18(6):247-351.
Outlines

/