img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Aeolian Sediment Transport in the Sanlongsha Area to the North of Kumtagh Desert

  • Yang Zhuanling ,
  • Qian Guangqiang ,
  • Dongzhibao ,
  • Luo Wanyin ,
  • Zhang Zhengcai ,
  • Lu Junfeng ,
  • Li Jiyan
Expand
  • 1. Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2016-09-13

  Revised date: 2016-09-24

  Online published: 2018-01-20

Abstract

The development of aeolian geomorphology is controlled by near surface sand movement, whereas the current research pays more attention to the short period (a few minutes to a few hours) and single direction (facing the main direction) of the blowing sand structure characteristics, and it is difficult to relate the results to the long-term geomorphological processes. Thus, we conducted a whole year field observation of aeolian sediment transport from May 2014 to May 2015 in the Sanlongsha Area of the Northern Kumtagh Desert, adopting the eight-directional four layer gradient sand trap (SEDST). After continuous observation of six periods, totally obtained 192 sand samples from different directions and different heights. Observation results show that the total weight of the captured sediments is 405.2 kg within 1 m above the ground and 75.3% of them are transported within 0-0.2 m, reflecting the characteristics of near surface sediment transport. The average sediment transport rate is 55.2 kg·5m-1·5d-1, with sediments mainly from the N, NE and NW directions, and there is significant diversity in different seasons, and the maximum transport rate in spring is 2.5 times of the annual average value, followed by summer and winter minimum. The annual average sediment flux profile (blowing sand structure) shows exponential decline trend, part of the flux profile has presented the "trunk effect" over the gobi surface. The annual mean net flux is 1.159 kg·5m-1·5d-1, along with the increase of the height decreased, and the variation of net flux with altitude at different time periods is consistent with that of the whole year; the annual mean resultant sediment transport direction is 193.2, and the direction of sediment transport increases with the increase of the height from the northeast to the north. In conclusion, the sediment transport intensity reaches the strongest in the spring, and the main sediment transport direction is N, NE and NW, with a secondary sediment transport direction, S direction, in spring and summer, respectively. The study has great significance for the further understanding aeolian sediment transport of Sanlongsha area and revealing the material sources of Kumtagh desert.

Cite this article

Yang Zhuanling , Qian Guangqiang , Dongzhibao , Luo Wanyin , Zhang Zhengcai , Lu Junfeng , Li Jiyan . Aeolian Sediment Transport in the Sanlongsha Area to the North of Kumtagh Desert[J]. Journal of Desert Research, 2018 , 38(1) : 58 -67 . DOI: 10.7522/j.issn.1000-694X.2016.00132

References

[1] 李振山,倪晋仁.风沙流研究的历史、现状及其趋势[J].干旱区资源与环境,1998,12(3):90-98.
[2] 柳本立,张伟民,刘小宁,等.莫高窟顶戈壁偏东风作用下输沙率变化的观测研究[J].中国沙漠,2010,30(3):516-521.
[3] 廖空太,李耀辉,刘虎俊,等.库姆塔格沙漠羽毛状沙垄风沙活动强度特征[J].中国沙漠,2008,28(3):399-404.
[4] 屈建军,井哲帆,张克存,等.HDPE蜂巢式固沙障研制与防沙效应实验研究[J].中国沙漠,2008,28(4):599-604.
[5] Bagnold R A.The Physics of Blown Sand and Desert Dunes[M].London,UK:Methuen,1941:265.
[6] Chepil W S.Dynamics of wind erosion:Ⅰ.nature of movement of soil by wind[J].Soil Science,1945,60(4):305-320.
[7] Chepil W S.Dynamics of wind erosion:Ⅱ.initiation of soil movement[J].Soil Science,1945, 60(5):397-411.
[8] Chepil W S,Woodruff N P.The physics of wind erosion and its control 1[J].Advances in Agronomy,1963,15:211-302.
[9] 兹纳门斯基а и.沙地风蚀过程的实验研究和沙堆防止问题[M].杨郁华,译.北京:科学出版社, 2003:120.
[10] 哈斯.腾格里沙漠东南缘沙丘表面风沙流结构变异的初步研究[J].科学通报,2004,19(11):1099-1104.
[11] 冯大军,倪晋仁,李振山.风沙流中不同粒径组沙粒的输沙量垂向分布实验研究[J].地理学报,2007,62(11):1194-1203.
[12] 张克存,屈建军,俎瑞平,等.戈壁风沙流结构和风速廓线特征研究[J].水土保持研究,2005,12(1):54-58.
[13] 张克存,屈建军,俎瑞平,等.戈壁、流沙地表风沙流特性研究[J].干旱区资源与环境,2008,22(10):55-59.
[14] 屈建军,黄宁,拓万全,等.戈壁风沙流结构特性及其意义[J].地球科学进展,2005,20(1):19-23.
[15] 韩致文,缑倩倩,杜鹤强,等.新月形沙丘表面100 cm高度内风沙流输沙量垂直分布函数分段拟合[J].地理科学,2012,32(7):892-897.
[16] 董玉祥,Hesp P A,Namikas S L,等.海岸横向沙脊表面风沙流结构粒度响应的野外观测研究[J].中国沙漠,2008,28(6):1022-1028.
[17] 董治宝,屈建军,钱广强,等.库姆塔格沙漠风沙地貌区划[J].中国沙漠,2011,31(4):805-814.
[18] 俄有浩,苏志珠,王继和,等.库姆塔格沙漠综合科学考察成果初报[R].2006:26,693-697.
[19] 王涛.中国沙漠与沙漠化[M].石家庄:河北科学技术出版社,2003:689-698.
[20] 王继和,丁峰,廖空太,等.库姆塔格沙漠综合考察的主要进展[J].干旱区研究,2009,26(2):243-248.
[21] 杨转玲,钱广强,董治宝,等.库姆塔格沙漠北部三垄沙地区风成沉积物粒度特征[J].中国沙漠,2016,36(3):589-596.
[22] 朱震达,赵兴梁,凌裕泉,等.治沙工程学[M].北京:中国环境科学出版社,1998:34-36.
[23] 武建军,何丽红,郑晓静.跃移层中沙粒浓度分布特征的研究[J].兰州大学学报:自然科学版,2002,38(3):15-21.
[24] 张正偲,董治宝.腾格里沙漠东南部野外风沙流观测[J].中国沙漠,2013,33(4):973-980.
[25] Butterfield G R.Near-bed mass flux profiles in aeolian sand transport:high-resolution measurements in a wind tunnel[J].Earth Surface Processes & Landforms,1999,24(24):393-412.
[26] Dong Z,Lu J,Man D,et al.Equations for the near-surface mass flux density profile of wind-blown sediments[J].Earth Surface Processes and Landforms,2011,36:1292-1299.
[27] Dong Z,Liu X,Wang H,et al.The flux profile of a blowing sand cloud:a wind tunnel investigation[J].Geomorphology,2003,49:219-230.
[28] Liu X,Dong Z.Experimental investigation of the concentration profile of a blowing sand cloud[J].Geomorphology,2004,60:371-381.
[29] Yang P,Dong Z,Qian G,et al.Height profile of the mean velocity of an aeolian saltating cloud:wind tunnel measurements by particle image velocimetry[J].Geomorphology,2007,89:320-334.
[30] 吴正.风沙地貌与治沙工程学[M].北京:科学出版社,2003:196-201.
[31] 韩致文,董治宝,王涛,等.塔克拉玛干沙漠风沙运动若干特征观测研究[R].2003:33,255-263.
[32] 张正偲,董治宝,赵爱国,等.库姆塔格沙漠风沙活动特征[J].干旱区地理,2010,33(6):939-946.
Outlines

/