The research on grain size is of great importance in aeolian geomorphology. On one hand, grain size characteristics of the surface sediments not only reflects the wind for transporting and sorting but also records the wind strength formation of the aeolian process. On the other hand, it embodies that terrain and other obstacles have made a big change on the sand flow transport processes. Thus, studying the spatial distribution of grain size in aeolian flow in the hinter land of Taklimakan Desert is extremely important. To reveal spatial distribution of grain size in aeolian flow, two kinds underlying surface, bare sandy land and nylon net checkerboard barrier, were selected in this study. Using two kinds of sand collectors (one was set to observe sand flow in the vertical height, the other was set to observe sand flow in the horizontal direction) to measure sediment runoff of sand flow in 2-100 cm and 16 directions. And then the grain size of sand samples was analyzed by BT-2001 Laser grain size analyzer. The results show that the shape of frequency distribution curves of grain size is unimodal. In the vertical height, the average grain size of sand grains at the L1 and L2 decreases with the increase of height. At L3 average grain size increase before it is stable. With the degree of depth in the sand barrier, sorting is worse; skewness increase, kurtosis reduces. With the decreasing of mean grain size, sorting is deteriorating. The thin tail of frequency distribution curves becomes more and more obvious. Grain size distribution is narrowed at the L1 and L2. At L1 the change rate of mean grain-size to standard deviation, skewness, kurtosis is greater than at L2. In the horizontal direction, the average grain size of sand have the first increase after a decrease during T1-T2-T3. At T2, sorting is the best, skewness and kurtosis are minimum. Size parameters and the average particle diameter have no significant correlation in the three points.
Li Xiaojuan
,
Zhou Zhibin
,
Li Ning
,
Lu Jingjing
,
Ding Xinyuan
,
Zhu Hai
,
Wang Lijie
. Spatial Distribution of Grain Size in Aeolian Flow in Nylon Net Checkerboard Barrier[J]. Journal of Desert Research, 2018
, 38(1)
: 76
-84
.
DOI: 10.7522/j.issn.1000-694X.2016.00110
[1] 李恩菊.巴丹吉林沙漠与腾格里沙漠沉积物特征的对比研究[D].西安:陕西师范大学,2011.
[2] 马倩,武胜利,刘永泉,等.艾比湖流域抛物线沙丘表层沉积物粒度特征[J].中国沙漠,2014,34(3):650-657.
[3] 沈亚萍,张春来,李庆,等.中国东部沙区表层沉积物粒度特征[J].中国沙漠,2016,36(1):150-157.
[4] 钱广强,董治宝,罗万银,等.巴丹吉林沙漠地表沉积物粒度特征及区域差异[J].中国沙漠,2011,31(6):1357-1363.
[5] 徐志伟,鹿化煜,赵存法,等.库姆塔格沙漠地表物质组成、来源和风化过程[J].地理学报,2010,65(1):53-64.
[6] 何清,杨兴华,霍文,等.库姆塔格沙漠粒度分布特征及环境意义[J].中国沙漠,2009,29(1):18-22.
[7] 哈斯,庄燕美,王蕾,等.毛乌素沙地南缘横向沙丘粒度分布及其对风向变化的响应[J].地理科学进展,2006,25(6):42-51.
[8] 杨转玲,钱广强,董治宝,等.库姆塔格沙漠北部三垄沙地区风成沉积物粒度特征[J].中国沙漠,2016,36(3):589-596.
[9] 陈渭南.塔克拉玛干沙漠840E沿线沙物质的粒度特征[J].地理学报,1993,48(1):33-46.
[10] 孔丹,何清,张瑞军,等.塔克拉玛干沙漠腹地沙尘暴过程贴地层梯度输沙样粒度特征分析[J].干旱区资源与环境,2009,23(1):49-53.
[11] 哈斯.腾格里沙漠东南缘格状沙丘粒度特征与成因探讨地理研究[J].地理研究,1998,17(2):178-184.
[12] 哈斯,王贵勇.沙坡头地区新月形沙丘粒度特征[J].中国沙漠,2001,21(3):271-275.
[13] 魏怀东,徐先英,王继和,等.库姆塔格沙漠沙丘的粒度特征[J].水土保持学报,2007,21(3):6-9.
[14] 李超,董治宝,崔徐甲.腾格里沙漠东南缘不同发育阶段横向沙丘粒度特征[J].中国沙漠,2015,35(1):129-135.
[15] 李振山,陈庭,冯起,等.塔克拉玛干沙漠腹地纵向沙垄表面沙物质粒度特征[J].干旱区资源与环境,1998,12(1):21-28.
[16] 王训明,陈广庭.塔里木沙漠石油公路半隐蔽式沙障区与流沙区沙物质粒度变化[J].中国沙漠,1996,16(2):180-184.
[17] 汪言在,伍永秋,苟诗薇.塔克拉玛干沙漠中部地区两类半隐蔽格状沙障内部沉积粒度特征浅析[J].中国沙漠,2009,29(6):1056-1062.
[18] 冯大军,倪晋仁,李振山.风沙流中沙粒粒度的垂直和水平分布特征[J].泥沙研究,2008(5):22-30.
[19] 王翠,雷加强,李生宇,等.策勒绿洲-沙漠过渡带风沙流挟沙粒度的垂直分异[J].水土保持学报,2014,37(2):230-238.
[20] 何清,杨兴华,艾力·买买提明,等.塔克拉玛干沙漠风蚀起沙观测研究:试验介绍与观测结果初报[J].中国沙漠,2011,31(2):315-322.
[21] Folk R L,Ward W C.Brazos river bar:a study in the significance of grain size parameters[J].Journal of Sedimentary Petrology,1957,27:3-26.
[22] 陈冬梅,穆桂金.不同沉积环境下沉积物的粒度分形特征的对比研究[J].干旱区地理,2004,27(1):47-51.
[23] 屈建军,刘贤万,雷加强,等.尼龙网栅栏防沙效应的风洞模拟实验[J].中国沙漠,2001,21(3):276-280.
[24] 卢连战,史正涛.沉积物粒度参数内涵及计算方法的解析[J].环境科学与管理,2010,35(6):54-60.