img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Genetic Structure of Ammopiptanthus and Its Conservation Implications

  • Su Zhihao ,
  • Shi Wei ,
  • Zhuo Li ,
  • Pan Borong ,
  • Wang Jiancheng
Expand
  • 1. Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
    2. Library, Xinjiang Normal University, Urumqi 830011, China

Received date: 2016-09-20

  Revised date: 2016-11-08

  Online published: 2018-01-20

Abstract

Ammopiptanthus is an only evergreen shrub relics with broad leaves in Neimeng-Xinjiang desert. There has been long dispute about the classification of the genus Ammopiptanthus, and it is at risk of extinction. We investigate the genetic structure across its whole distribution range using modern molecular techniques to provide useful information for its conservation. Both the nuclear and chloroplast datasets showed that Ammopiptanthus comprised two lineages, distributed respectively in Tarim Desert and Alxa Desert. The molecular data give further support to the suggestion that populations in Tarim Desert should be given species rank, A. nunas. The level of genetic diversity in the two species are both low, might caused by origination from genetically depauperate populations, and increased genetic drift and selfing in small fragmented populations. There is no significant genetic structure in A. nunas. However, there is a significant genetic divergence between north and south Alxa Desert in A. mongolicus. Origins from different refugia may be responsible for the genetic divergence between north and south of Alxa Desert. Based on these results, we provide some reasonable advices for the conservation of Ammopiptanthus.

Cite this article

Su Zhihao , Shi Wei , Zhuo Li , Pan Borong , Wang Jiancheng . Genetic Structure of Ammopiptanthus and Its Conservation Implications[J]. Journal of Desert Research, 2018 , 38(1) : 163 -171 . DOI: 10.7522/j.issn.1000-694X.2016.00147

References

[1] Millar C I,Libby W J.Strategies for conserving clinal,ecotypic,and disjunct popplation diversity in widespread species[M]//Falk D A,Holsinger K E.Genetics and Consenvation of Rare Plants.New York,USA:Oxford University,1991:149-170.
[2] Ishihama F,Ueno S,Tsumura Y,et al.Gene flow and inbreeding depression inferred from fine-scale genetic structure in an endangered heterostylous perennial,Primula sieboldii[J].Molecular Ecology,2005,14:983-990.
[3] 王英,康明,黄宏文.用分子标记揭示植物随机大居群中亚居群的遗传结构茅栗自然居群空间遗传结构的SSR分析[J].植物生态学报,2006,30(1):147-156.
[4] Falk D A,Holsinger K E.Genetics and Conservation of Rare plants[M].New York,USA:Oxford,University Press,1991.
[5] 邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记[M].北京:科学出版社,2001.
[6] 陈灵芝.中国的生物多样性——现状及其保护对策[M].北京:科学出版社,1993:99-113.
[7] Meffe G K,Carroll C R.Principles of Conservation Biology[M].Sunderland,USA:Sinauer Associates,Ins,1994.
[8] 吴征镒.中国植被[M].北京:科学出版社,1978.
[9] 侯学煜.中国自然地理——植物地理(下册)[M].北京:科学出版社,1988.
[10] 赵一之,朱宗元.亚洲中部荒漠区的植物特有属[J].云南植物研究,2003,25(2):113-122.
[11] Чжэн Сы-сый.Новый Род Семейства Leguminosae из Центральной Азии[J].Вотанический Журнал,1959,44(10):1381-1386.
[12] 郑斯绪.亚洲中部特有的豆科常绿灌木属——砂冬青属[C]//中国植物学会三十周年论文摘要汇编,1963:89-90.
[13] 崔鸿宾.中国植物志(第42卷第2分册)[M].北京:科学出版社,1998.
[14] 郑万钧.中国树木志(第二卷)[M].北京:中国林业出版社,1985.
[15] 刘媖心.中国沙漠植物志(第二卷)[M].北京:科学出版社,1987.
[16] 韦思奇.中国植物志(第42卷第2分册)[M].北京:科学出版社,1998.
[17] 贾恢先,赵曼容.荒漠地区的新油源——沙冬青[J].甘肃林业科技,1985,3:32-33.
[18] 刘惠兰.宁夏野生经济植物[M].银川:宁夏人民出版社,1991:323.
[19] 潘伯荣,尹林克.我国干旱荒漠区珍稀濒危植物资源的综合评价及合理利用[J].干旱区研究,1991,8(3):45-56.
[20] 王康富,蒋理.沙坡头地区固沙植物种的选择问题[M]//赵兴梁.腾格里沙漠沙坡头地区流沙治理研究(二).银川:宁夏人民出版社,1993:126-138.
[21] 蒋志荣.沙区常绿灌木沙冬青的防风固沙改土效能研究[J].甘肃农业大学学报,1984,29(1):83-86.
[22] 陈默君,贾慎修.中国饲用植物[M].北京:中国农业出版社,2002.
[23] 王庆锁,李勇,张灵芝.珍稀濒危植物沙冬青研究概况[J].生物多样性,1995,3(3):153-156.
[24] 严成,潘伯荣.蒙古沙冬青的园林价值[J].干旱区研究,1991,8(3):68-69.
[25] 傅立国.中国植物红皮书(稀有濒危植物第一册)[M].北京:科学出版社,1991.
[26] 许国英.沙冬青中化学成分研究[J].干旱区研究,1997,14(3):69-71.
[27] 李慧卿,马文元,李慧勇.沙冬青抗逆性及开发利用前景分析研究[J].世界林业研究,2000,13(5):67-71.
[28] 周宜君,刘春兰,冯金朝,等.沙冬青抗旱、抗寒机理的研究进展[J].中国沙漠,2001,21(3):312-316.
[29] 刘美芹,卢存福,尹伟伦.珍稀濒危植物沙冬青生物学特性及抗逆性研究进展[J].应用与环境生物学报,2004,10(3):384-388.
[30] 潘伯荣,葛学军.我国沙冬青属植物保护生物学研究和保护实践的回顾与展望[C].中国生物多样性保护与研究进展Ⅵ(第六届全国生物多样性保护与持续利用研讨会论文集).北京:气象出版社,2005:373-393.
[31] Wei Z,Lock J M.Fabaceae Tribe Thermopsideae[M]//Wu Z Y,Raven P H.Flora of China(Vol 10).Beijing:Science Press,2010:100
[32] Wang H C,Sun H,Compton J A,et al.A phylogeny of Thermopsideae (Leguminosae:Papilionoideae) inferred from nuclear ribosomal internal transcribed spacer (ITS) sequences[J].Biological Journal of the Linnean Society,2006,151:365-373.
[33] Xie L,Yang Y.Miocene origin of the characteristic broadleaved evergreen shrub Ammopiptanthus (Leguminosae) in the desert flora of eastern central Asia[J].International Journal of Plant Sciences,2012,173(8):944-955.
[34] Doyle J J,Doyle J L.A rapid DNA isolation procedure from small quantities of fresh leaf tissues[J].Phytochemical Bulletin,1987,19:11-15.
[35] Sang T,Crawford D J,Stuessy T F.Chloroplast DNA phylogeny,reticulate evolution,and biogeography of Paeonia (Paeoniaceae)[J].American Journal of Botany,1997,84:1120-1136.
[36] Shaw J,Lickey E,Beck J T,et al.The tortoise and the hare Ⅱ:relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis[J].American Journal of Botany,2005,92:142-166.
[37] Taberlet P L,Pautou G G,Bouvet J.Universal primers for amplification of three non-coding regions of chloroplast DNA[J].Plant Molecular Biology,1991,17:1105-1109.
[38] White T J,Bruns T,Lee S,et al.Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M]//Innis M A,Gelfand D H,Sninsky J J,et al.PCR Protocols:A Guide to Methods and Applications.San Diego,USA:Academic Press,1990:315-322.
[39] Thompson J D,Higgins D G,Gibson T J.Clustal-W-improving the sensitivity of progressive multiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice[J].Nucleic Acids Research,1994,22:4673-4680.
[40] Clement M,Posada D,Crandall K A.TCS:a computer program to estimate gene genealogies[J].Molecular Ecology,2000,9:1657-1659.
[41] Templeton A R,Crandall K A,Sing C F.A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data.Ⅲ.Cladogram estimation[J].Genetics,1992,132:619-633.
[42] Dupanloup I,Schneider S,Excoffier L.A simulated annealing approach to define the genetic structure of populations[J].Molecular Ecology,2002,11:2571-2581.
[43] Excoffier L,Smouse P,Quattro J.Analysis of molecular variance inferred from metric distances among DNA haplotypes:applications to human mitochondrial DNA restriction data[J].Genetics,1992,131:479-491.
[44] Tamura K,Stecher G,Peterson D,et al.MEGA6:molecular evolutionary genetics analysis version 6.0[J].Molecular Biology and Evolution,2013,30:2725-2729.
[45] Peakall R,Smouse P E.GENALEX 6:genetic analysis in Excel.Population genetic software for teaching and research[J].Molecular Ecology Notes,2006,6:288-295.
[46] Wiley E O.The evolutionary species concept reconsidered[J].Systems Biology,1978,27:17-26.
[47] Liu Y X.A study on origin and formation of the Chinese desert floras[J].Acta Phytotaxonomica Sinica,1995,33:131-143.
[48] Sun H.Tethys retreat and Himalayas-Hengduanshan Mountains uplift and their significance on the origin and development of the Sino-Himalayan elements and alpine flora[J].Acta Botanica Yunnanica,2002,24:273-288.
[49] Sun H,Li Z M.Qinghai-Tibet plateau uplift and its impact on Tethys flora[J].Advance in Earth Sciences,2003,18:852-862.
[50] Sun J M,Zhang L Y,Deng C L,et al.Evidence for enhanced aridity in the Tarim Basin of China since 5.3 Ma[J].Quaternary Science Reviews,2008,27:1012-1023.
[51] Miao Y F,Herrmann M,Wu F L,et al.What controlled Mid-Late Miocene long-term aridification in Central Asia?-global cooling or Tibetan Plateau uplift:a review[J].Earth-Science Reviews,2012,112:155-172.
[52] Guo Z T,Peng S Z,Hao Q Z,et al.Late Tertiary development of aridification in northwestern China:link with the arctic ice-sheet formation and Tibetan uplifts[J].Quaternary Sciences,1999,6:556-566.
[53] Shi Y F,Cui Z J,Su Z.The Quaternary Glaciations and Environmental Variations in China[M].Hebei:Hebei Science and Technology Publishing House,2005:85-100.
[54] Xu X,Kleidon A,Miller L,et al.Late Quaternary glaciation in the Tianshan and implications for palaeoclimatic change:a review[J].Boreas,2010,39:215-232.
[55] Ge X J,Yu Y,Yuan Y M,et al.Genetic diversity and geographic differentiation in endangered Ammopiptanthus (Leguminosae) populations in desert regions of northwest China as revealed by ISSR analysis[J].Annals of Botany,2005,95:843-851
[56] Chen G Q,Crawford D,Huang H W,et al.Genetic structure and mating system of Ammopiptanthus mongolicus (Leguminosae),an endangered shrub in north-western China[J].Plant Species Biology,2009,24:179-188.
[57] Chen G Q,Huang H W,Crawford D J,et al.Mating system and genetic diversity of a rare desert legume Ammopiptanthus nanus (Leguminosae)[J].Journal of Systematics and Evolution,2009,47(1):57-66.
[58] Burdon J J,Jarosz A M,Brown A H D.Temporal patterns of reproduction and outcrossing in weedy populations of Echium plantagium[J].Biological Journal of the Linnean Society,1988,34:81-92.
[59] Wolfe K H,Li W H,Sharp P M.Rates of nucleotide substitution vary greatly among plant mitochondrial,chloroplast,and nuclear DNAS[J].Proceedings of the National Academy of Sciences of the United States of America,1987,84:9054-9058.
[60] Gitzendanner M A,Soltis P S.Patterns of genetic variation in rare and widespread plant congeners[J].American Journal of Botany,2000,87:783-792.
[61] Lande R.Anthropogenic,ecological and genetic factors in extinction and conservation[J].Researches on Population Ecology,1998,40:259-269.
[62] Frankel O H.The place of management in conservation[M]//Schonewald-Cox C M,Chambers S M,MacBryde B,et al.Genetics and Conservation.Menlo Park,USA:Benjamin-Cummings,1983.
Outlines

/