img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Ecological Restoration Assessment in Minqin Based on Spectral Mixture Analysis

  • Jiang Wanbei ,
  • Sun Danfeng ,
  • Sun Qiangqiang
Expand
  • 1. College of Management, Chongqing University of Technology, Chongqing 400054, China;
    2. College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193, China

Received date: 2016-07-11

  Revised date: 2016-08-16

  Online published: 2018-01-20

Abstract

At the beginning of the 21st century, China launched a number of key ecological restoration projects (KERPs) unprecedentedly. Minqin is a typical degrading oasis, and its success and lessons of KERPs are helpful to global dryland land degradation control. This article obtained multi-seasonal Landsat data in 2010 and 2015, and conducted a spectral mixture analysis on each-season remote sensing data. Based on the spectral mixture analysis results, we implemented land cover/use classification in 2010 and 2015. The combination of post-classification comparison and endmember abundance difference in invariant land was then adopted to analyze ecological restoration status in Minqin during the initial period of the second ecological restoration stage (2010-2015). The results show that the land degradation area is 39 712.14 hm2, and the area of restoration is 101 503.44 hm2. The area of land restoration is larger than that of degradation, which indicates Minqin reached the zero net land degradation goal from 2010 to 2015, and was in a relative recovery situation. Accordingly, sand land area and sandification degree in invariant sand land decreased. Although the area of salinized land has increased, the salinization degree of invariant region decreased. Forest and grass land compared to cropland, and summer crop compared to spring crop are preponderant vegetation cover types. Water area is somewhat reduced, but the water content in invariant region increased. This research shows that Minqin has already enter into virtuous restoration phase after nearly 20-year ecological restoration governance.

Cite this article

Jiang Wanbei , Sun Danfeng , Sun Qiangqiang . Ecological Restoration Assessment in Minqin Based on Spectral Mixture Analysis[J]. Journal of Desert Research, 2018 , 38(1) : 210 -218 . DOI: 10.7522/j.issn.1000-694X.2016.00108

References

[1] MEA.Ecosystems and Human Well-Being:Desertification Synthesis[EB/OL].http://www.millenniumassessment.org/en/Index-2.html.
[2] UNCCD.Zero Net Land Degradation[EB/OL].http://www.unccd.int/Lists/SiteDocumentLibrary/Rio+20/UNCCD_PolicyBrief_ZeroNetLandDegradation.pdf.
[3] 陈翔舜,高斌斌,王小军,等.甘肃省民勤县土地荒漠化现状及动态[J].中国沙漠,2014,34(4):970-974.
[4] 孙丹峰,李红.民勤绿洲荒漠化遥感评价研究[J].农业工程学报,2002,18(6):176-181.
[5] 王建,李文君,宋冬梅,等.近30年来民勤土地荒漠化变化遥感分析[J].遥感学报,2004,8(3):282-288.
[6] 唐嘉琪,石培基.民勤土地利用格局时空变化研究[J].中国沙漠,2013,33(3):928-936.
[7] 齐鹏,张仁陟,王晓娇,等.基于物元模型的民勤绿洲土地生态安全评价[J].中国沙漠,2012,32(5):1494-1500.
[8] 韦振锋,任志远,张翀,等.1999-2010年陕甘宁黄土高原区荒漠化空间特征[J].中国沙漠,2014,34(5):1230-1236.
[9] 田静,苏红波,陈少辉,等.黑河中游绿洲化荒漠化的时空变化遥感分析[J].资源科学,2011,33(2):347-355.
[10] 赵敏敏,周立华,陈勇,等.生态政策驱动下的内蒙古自治区杭锦旗土地利用及生态系统服务价值变化[J].中国沙漠,2016,36(3):842-850.
[11] Dawelbait M,Morari F.Monitoring desertification in a savannah region in Sudan using Landsat images and spectral mixture analysis[J].Journal of Arid Environments,2012,80:45-55.
[12] Sohl T L.Change analysis in the United Arab Emirates:an investigation of techniques[J].Photogrammetric Engineering & Remote Sensing,1999,65(4):475-484.
[13] Rodriguez-Galiano V F,Chica-Rivas M.Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and digital terrain models[J].International Journal of Digital Earth,2014,7(6):492-509.
[14] Somers B,Asner G P,Tits L,et al.Endmember variability in spectral mixture analysis:a review[J].Remote Sensing of Environment,2011,115(7):1603-1616.
[15] Small C,Milesi C.Multi-scale standardized spectral mixture models[J].Remote Sensing of Environment,2013,136(5):442-454.
[16] 刘娜,李红,孙丹峰,等.绿洲景观多季相特征的线性光谱混合分解方法研究[J].农业工程学报,2010(8):174-182.
[17] Sun D,Liu N.Coupling spectral unmixing and multiseasonal remote sensing for temperate dryland land-use/land-cover mapping in Minqin County,China[J].International Journal of Remote Sensing,2015,36(14):3636-3658.
[18] Sun D.Detection of dryland degradation using landsat spectral unmixing remote sensing with syndrome concept in Minqin County,China[J].International Journal of Applied Earth Observation and Geoinformation,2015,41:34-45.
[19] Sun D,Richard D,Li B.Agricultural causes of desertification risk in Minqin,China[J].Journal of Environmental Management,2006,79(4):348-356.
[20] Sun D,Richard D,Li H,et al.Modeling desertification change in Minqin County,China[J].Environmental Monitoring and Assessment,2005,108(1/2/3):169-188.
[21] USGS.Landsat Level-1 Product Collections and Implementation-plans for 2016[EB/OL].http://landsat.usgs.gov/landsatcollections.php.
[22] Wu C,Murray A T.Estimating impervious surface distribution by spectral mixture analysis[J].Remote Sensing of Environment,2003,84(4):493-505.
[23] 常兆丰,仲生年,韩福贵,等.民勤沙区主要植物群落退化特征及其演替趋势分析[J].干旱区研究,2008,25(3):382-388.
[24] 高志海,李增元,魏怀东,等.基于遥感的民勤绿洲植被覆盖变化定量监测[J].地理研究,2006,25(4):587-595.
[25] 喻小倩,刘娜,李红,等.基于线性光谱混合分解和最大似然分类相结合的土地覆被分类——以红寺堡灌区为例[J].国土资源遥感,2010(1):96-100.
[26] 陶秋香,陶华学,张连蓬.线性混合光谱模型在植被高光谱遥感分类中的应用研究[J].勘察科学技术,2004(1):21-24.
[27] Lu D,Mausel P,Brondizio E,et al.Change detection techniques[J].International Journal of Remote Sensing,2004,25(12):2365-2401.
Outlines

/