The observation data from conventional observation instruments and single-band(525 nm)integral nephelometer, PM10 automatic monitor and visibility instrument of the Taklimakan Desert Atmosphere Observation Station in 2010 were used to analyze the relationship between the aerosol scattering coefficient and various factors in the Tazhong. The results showed that:(1) Scattering coefficient and mass concentration of PM10 had a significant positive correlation, and the correlation coefficient was 0.96 in autumn, 0.94 in summer, and 0.91 in winter.(2)For mass scattering coefficient, the lowest value was in March, the highest value was in October; the lowest value was 0.66 m2·g-1 in spring, the highest value was 1.386 m2·g-1 in fall. The mass scattering coefficient of Tazhong station was smaller than that of Zhangbei Station of Hebei Province, Minqin Station of Gansu Province, Xigu District of Lanzhou, Xilinhaote Station of Inner Mongolia, Crete Island of Greece and Negev Desert of Israel. (3) There were a significantly negative correlation between visibility and scattering coefficient, and the coefficient was 0.80. The correlation coefficient in summer, autumn and winter exceeded that in whole year. With correlation coefficients 0.913, 0.908, and 0.857,respectively, and the lowest value was in spring (0.723). (4)When the wind speed was large, the scattering coefficient values were relatively large, and the correlation coefficient was 0.45. When the scattering coefficient was less than 500 Mm-1, the wind direction was distributed in ENE and NE; when the scattering coefficient was more than 500 Mm-1, the wind direction was mainly distributed in ENE, NE and E. In the ESE wind direction, the average of the scattering coefficient was the largest, followed by the SSE direction, and the minimum value was the S wind direction.
[1] 刘晓云,岳平.敦煌地区2001年春季气溶胶光学厚度反演[J].干旱区研究,2007,24(6):790-795.
[2] Harrison S P,Kohfeld K E,Roelandt C,et al.The role of dust in climate changes today at the last glacial maximum and in the future[J].Earth-Science Reviews,2001,54:43-80.
[3] Zhang X Y,Arimoto R,An Z S.Dust emission from Chinese desert sources linked to variation in atmospheric circulation[J].Journal Geophysical Research Atmosphere,1997,102(D23):28.
[4] 宿兴涛,李鲲,魏强,等.东亚沙尘光学特性及其对辐射强迫和温度的影响[J].中国沙漠2016,36(5):1381-1390.
[5] 杨帆,王顺胜,何清,等.塔克拉玛干沙漠腹地地表辐射与能量平衡[J].中国沙漠2016,36(5):1408-1418.
[6] Tegen I,Laciss A A,Fung I.The influence on climate forcing of mineral aerosols from disturbed soils[J].Nature,1996,380:419-422.
[7] Sokolik I N,Toon O B.Direct radiative forcing by anthropogenic airborne mineral aerosols[J].Nature,1996,381:681-683.
[8] Beuttell R G,Brewer A W.Instruments for the measurement of the visual range[J].Journal of Scientific Instruments,1943,26:357-359.
[9] Middleton W E K.Vision through the atmosphere[J].Physics Today,1954,7(3):21.
[10] Ahlquist N C,Charlson R J.A new instrument for evaluating the visual quality of air[J].Journal of the Air Pollution Control Association,1967,17(7):457-469.
[11] Charlson R J.Integrating nephelometer[J].Atmospheric Technology,1980,12:10-l4.
[12] Bodhaine B A.Aerosol absorption measurements at Barrow Mauna Loa and the south pole[J].Geophysical Research,1995,100(D5):8967-8975.
[13] Carrico C M,Rood M J,Ogren J A.Aerosol light scattering properties at Cape Grim,Ta smania,during the first aerosol characterization experiment(ACEI)[J].Journal of Geophysical Research,1998,103(D13):16565-16574.
[14] Anderson T L,Masonis S J,Covert D S,et a1.Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia[J].Journal of Geophysical Research,2003,108(D23):8647.
[15] Xu J,Bergin M H,Yu X,et al.Measurement of aerosol chemical,physical and radiative properties in the Yangtze delta region of China[J].Atmospheric Environment,2002,36:161-173.
[16] White W H,Macias E S,Nininger R C,et al.Size-resolved measearements of light scattering by ambient particles in the Southwestern U.S.A[J].Atmospheric Environment,1994,28:909-922.
[17] Chow J C,Watson J G,Lowenthal D H,et al.Comparability between PM2.5 and particle light scattering measurements[J].Environmental Monitoring and Assessment,2002,79:29-45.
[18] Bergin M H,Cass G R,Xu J,et al.Aerosol radiative,physical,and chemical properties in Beijing during June 1999[J].Geophysical Research,2001,106(D16):17969-17980.
[19] 胡波,张武,张镭,等.兰州市西固区冬季大气气溶胶粒子的散射特征[J].高原气象,2003,22(4):354-361.
[20] 柯宗建,汤洁,王炳忠,等.积分浊度计在沙尘暴监测网试验中应用分析[J].气象科技,2004,32(4):258-263.
[21] 杨莲梅,张广兴,魏文寿,等.粒子散射系数在沙尘天气观测分级中的初步分析[J].中国沙漠,2006,26(3):380-383.
[22] 章秋英,牛生杰,沈建国,等.半干旱区气溶胶散射特性研究[J].中国沙漠,2008,28(4):755-762.
[23] 孟昭阳,蒋晓明,颜鹏,等.太原冬季大气气溶胶的散射特征[J].气候变化研究进展,2007,3(5):255-260.
[24] 古金霞,白志鹏,解以扬,等.天津市冬季颗粒物散射消光特征[J].南开大学学报:自然科学版,2009,42(2):73-78.
[25] 陈霞,魏文寿,刘明哲,等.塔里木盆地沙尘气溶胶对短波辐射的影响——以塔中为例[J].中国沙漠,2008,28(5):920-926.
[26] 延昊,矫燕梅,毕宝贵,等.塔克拉玛干沙漠中心的沙尘气溶胶观测研究[J].中国沙漠,2006,26(3):389-394.
[27] 延昊,矫燕梅,赵琳娜,等.中国北方气溶胶散射和PM10浓度特征[J].高原气象,2008,27(4):852-859.
[28] 陆辉,魏文寿,刘明哲,等.塔克拉玛干沙漠腹地大气气溶胶散射特征研究[J].中国沙漠,2010,30(3):660-668.
[29] Vrekoussis M,Liakakou E,Koccak M.Seasonal variability of optical properties ofaerosols in the eastern Mediterranean[J].Atmospheric Environment,2005,39:7083-7094.
[30] Andreae T W,Andreae MO,Ichoku C,et a1.Light scattering by dust and anthropogenic aerosol at a remote site in the Negev Desert,Israel[J].Geophysics Research,2002,107:D900252.
[31] 姚青,韩素芹,蔡子颖,等.天津城区春季大气气溶胶消光特性研究[J].中国环境科学,2012,32(5):795-802.
[32] 刘新春,钟玉婷,何清,等.塔克拉玛干沙漠腹地及周边地区PM10时空变化特征及影响因素分析[J].中国沙漠,2011,31(2):323-331.