The aeolian deposits on the lake shore have always been a weak point in the study of lacustrine sediments. According to nearly 1/5 of the Qinghai Lake Basin, the east bank sand dunes provide a modern sedimentary example for studying the aeolian sediments of the modern fault basin. With the continuous development of sedimentology, the research content has gradually changed from the traditional model of "one element" to the source sink system of "two elements". Based on field geological investigation and remote sensing image data, combined with literature investigation and analysis, the results are obtained by the analysis. The shoreline in the front zone of the Tuanbao Mountain is relatively broad, which shows the Qinghai Lake level had reached the piedmont zone. Large area of the shore deposit and aeolian deposits were eroded by the wind, which provided the source base for sand accumulation. The elongated landforms of the rift lake basin cause the wind to blow along the long axis, resulting in the accumulation of aeolian deposits at one end of the long axis. The complex geomorphic features in the front of Tuanbao/Daban mountain provide favorable topographic conditions for the formation of the pyramid dunes. Northwest wind generated waves and longshore currents on the island and Haiyan Bay coastal zone, which result in shallow lake sand accumulated along the sand dam. With the decrease of the lake level, the coastal sand bar is exposed to the surface of the water and gradually closed, forming barrier island lagoon deposits.
[1] Goodred Jr S L.Response of the Ganges dispersal system to climate change:a source-to-sink view since the last interstande[J].Sedimentary Geology,2003,162(1/2):83.
[2] Allen P A.From landscape into geological history[J].Nature,2008,451(7176):254-276.
[3] Somme T O,Helland-Hansen W,Martunsen O J,et al.Relationships between morphological and sedimentological parameters in source-to-sink systems:a basis for predicting semi-quantitative characteristics in subsurface system[J].Basin Research,2009,21(4):361-287.
[4] Somme T O,Jackson C A-L,Vaksdal M.Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Mor-Trondelag area of southern Norway:part 1-desponsitional setting and fan evolution[J].Basin Research,2013,25(5):489-511.
[5] Somme T O,Jackson C A-L.Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Mor-Trondelag area of southern Norway:part 2-sediment dispersal and forcing mechanisms[J].Basin Research,2013,25(5):512-531.
[6] Anthony E J,Julian M.Source-to-sink sediment transfers,environmental engineering and harazad mitigation in the steep Var River catchment,French Riviera,southeastern France[J].Geomorphology,1999,31(1):337-354.
[7] Moore G T.Interaction of rivers and oceans:pleistocene petroleum potential[J].AAPG Bulletin,1969,53(12):2421-2430.
[8] 林畅松,夏庆龙,施和生,等.地貌演化、源-汇过程与盆地分析[J].地学前缘,2015,22(1):9-20.
[9] Normark W R.Growth patterns of deep sea fans[J].AAPG Bulletin,1970,54(11):2170-2195.
[10] Walker R G.Deep-water sandstone facies and ancient submarine fans:models for exploration for stratigraphic traps[J].AAPG Bulletin,1978,62(6):932-966.
[11] 姜在兴,杨伟利,于雯泉,等.湖缘峡谷及其含油性[J].地学前缘,2005,12(3):186-194.
[12] 徐长贵.陆相断陷盆地源-汇时空耦合控砂原理:基本思想、概念体系及控砂模式[J].中国海上油气,2013,25(4):1-21.
[13] 吴冬,朱筱敏,刘常妮,等."源-汇"体系主导下的断陷湖盆陡坡带扇三角洲发育模式探讨:以苏丹Muglad盆地Fula凹陷为例[J].高校地质学报,2015,21(4):653-663.
[14] Lin C S,Yang H J,Liu J Y,et al.Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin,Northwest China:significance for the evolution of paleo-uplifts and tectonic geography during deformation[J].Journal of Asian Earth Sciences,2012,46(2):1-19.
[15] Lin C S,Yang H J,Liu J Y,et al.Paleo-structural geomorphology of the Paleozoic central uplift belt and its constraint on the development of deposition facies is the Tarim Basin[J].Science in China:Series D,2009,52:823-834.
[16] 徐叔鹰,徐德馥.青海湖东岸的风沙堆积[J].中国沙漠,1983,3(3):11-17.
[17] 张登山,王彬.青海湖中沙堤的形成及其对湖水位的影响[J].干旱区资源与环境,1991,5(1):96-102.
[18] 张登山,张佩,吴汪洋,等.青海湖东克土沙区风沙运动规律及防治对策[J].中国沙漠,2016,36(2):274-280.
[19] 宋春晖,王新民,师永民,等.青海湖现代滨岸沉积微相及其特征[J].沉积学报,1999,17(1):51-57.
[20] 宋春晖,方小敏,师永民,等.青海湖西岸风成沙丘特征及成因[J].中国沙漠,2000,20(4):443-446.
[21] 师永民,王新民,宋春晖.青海湖湖区风成沙堆积[J].沉积学报,1996,14(增刊1):234-238.
[22] 中国科学院兰州地质研究所,中国科学院水生生物研究所,中国科学院微生物研究所,等.青海湖综合考察报告[M].北京:科学出版社,1979:1-165.
[23] 青海省地质矿产局.青海省区域地质志[M].北京:地质出版社,1991:1-379.
[24] 张飞.青海湖和岱海流域水化学特征及现代化学风化作用[D].北京:中国地质大学(北京),2009.
[25] 顾延生,张旺盛,朱云海,等.祁连山东南缘基于RGMAP的数字化地貌研究[J].地球科学-中国地质大学学报,2003,28(4):395-400.
[26] 申红艳,余锦华.环青海湖地区风的气候变化特征分析[J].青海环境,2007,17(4):170-172
[27] 中国科学院兰州分院,中国科学院西部资源环境研究中心.青海湖近代环境的演化和预测[M].北京:科学出版社,1994:69-149.
[28] 姚正毅,李晓英,肖建华.青海湖滨土地沙漠化驱动机制[J].中国沙漠,2015,35(6):1429-1437.
[29] 袁宝印,陈克造,Bowler J M,等.青海湖的形成与演化趋势[J].第四纪研究,1990,10(3):233-243
[30] 屈建军,凌裕泉,张伟民,等.金字塔沙丘形成机制的初步观测与研究[J].中国沙漠,1992,12(4):20-28
[31] 江新胜,徐金沙,潘忠习.鄂尔多斯盆地白垩纪沙漠石英沙颗粒表面特征[J].沉积学报,2003,21(3):416-422.
[32] 龚政,吴驰华,伊海生,等.滇西思茅盆地景谷地区曼岗组石英颗粒表面特征及其指示意义[J].地质学报,2015,89(11):2053-2061.
[33] 袁桃,吴驰华,伊海生,等.云南思茅盆地景谷地区下白垩统曼岗组风成砂岩沉积学特征及其古气候意义[J].地质学报,2015,89(11):2062-2074.