Photosynthetic response characteristics and water use efficiency can further understand the adaptive mechanism of Tamarix chinensis on water and salt stress and provide scientific guidance for the improvement and management of salinization in desert oasis wetland. This project took the desert oasis wetlands as the subject, photosynthetic parameters and its response to light intensity of T. chinensis under water and salt gradients were measured by Li-6400 photosynthetic instrument, to study the influencing mechanism of water and salt gradients on the photosynthesis and water use efficiency of plants in desert oasis wetlands. The results were as follows:The diurnal variation in net photosynthetic rate (Pn) of T. chinensis in desert oasis wetlands showed two peaks. Compared with main peaks, the secondary peaks of Pn in riparian shrub wetland, salt marsh and oasis grassland wetland decreased by 19%, 8.5% and 11.2%, respectively. Transpiration rate (Tr) showed a single peak. Under the same water and salt environment, Pn and water use efficiency (WUE) of T. chinensis rose rapidly and then to a flat with the increase of photosynthetically active radiation (PAR). But Tr was not sensitive to the enhancement of PAR. The maximum net photosynthetic rate, the light saturation point and the apparent quantum efficiency of T. chinensis in salt marsh were the largest, and its light compensation point was the smallest. The light saturation point of T. chinensis in wetlands was in the range of 512.67-1 790 μmol·m-2·s-1, and the light compensation point was in the range of 16.28-19.23 μmol·m-2·s-1. Moderate water and salt content can promote photosynthesis. When water and salt content is too high or too low, it will inhibit the photosynthetic rate. The lower the salt content is, the wider the range of light intensity adaptability of T. chinensis in desert oasis wetlands. Moderate decrease of water content is beneficial to the improvement of water use efficiency.
[1] 梅荣.干旱区绿洲湿地生态系统研究的意义和重点[J].内蒙古科技与经济,2007,139(9):115-116.
[2] 马晓东,王明慧,李卫红,等.极端干旱区多枝柽柳幼苗对人工水分干扰的形态及生理响应[J].生态学报,2013,33(19):6081-6087.
[3] Xu D H,Li H L,Fang X W,et al.Responses of plant community composition and eco-physiological characteristics of dominant species to different soil hydrologic regimes in Alpine Marsh Wetlands on Qinghai Tibetan Plateau,China[J].Wetlands,2015,35:381-390.
[4] 李惠芳.莫莫格湿地扁秆藨草对水盐交互作用的生理生态响应特征[D].北京:中国科学院大学,2013.
[5] 童方平,方伟,马履一,等.水分胁迫下湿地松优良半同胞家系的光合特性响应研究[J].南京林业大学学报:自然科学版,2007,31(2):32-36.
[6] 谢敏,回嵘,刘立超,等.沙漠生物土壤结皮中真藓(Bryum argenteum)和土生对齿藓(Did ymodon vinealis)对降雪的生理响应[J].中国沙漠,2017,37(1):116-123.
[7] 张明艳,贾昕,查天山,等.油蒿(Artemisia ordosica)光系统Ⅱ光化学效率对去除降雨的响应[J].中国沙漠,2017,37(3):475-482.
[8] Gou S,Miller G.A groundwater-soil-plant-atmosphere continuum approach for modelling water stress,uptake,and hydraulic redistribution in phreatophytic vegetation[J].Ecohydrology,2014,7:1029-1041.
[9] Peykanpour E,Ghehsareh A M,Fallahzade J,et al.Interactive effects of salinity and ozonated water on yield components of cucumber[J].Plant Soil Environ,2016,62:361-366.
[10] Xia J B,Zhao X M,Ren J Y,et al.Photosynthetic and water physiological characteristics of Tamarix chinensis under different groundwater salinity conditions[J].Environmental and Experimental Botany,2017,138:173-183.
[11] Silva E N,Ribeiro R V,Ferreira-Silva S L,et al.Comparative effects of salinity and water stress on photosynthesis,water relations and growth of Jatropha curcas plants[J].Journal of Arid Environments,2010,74:1130-1137.
[12] 谢涛,杨志峰.水分胁迫对黄河三角洲河口湿地芦苇光合参数的影响[J].应用生态学报,2009,20(3):562-568.
[13] 戚志伟,姜楠,高艳娜,等.崇明岛东滩湿地芦苇光合作用对土壤水盐因子的响应[J].湿地科学,2016,14(4):538-545.
[14] 王伟华,张希明,闫海龙,等.盐处理对多枝柽柳光合作用和渗调物质的影响[J].干旱区研究,2009,26(4):561-568.
[15] 张佩,袁国富,庄伟,等.黑河中游荒漠绿洲过渡带多枝柽柳对地下水位变化的生理生态响应与适应[J].生态学报,2011,31(22):6677-6687.
[16] 邹杰,李春,刘卫国,等.不同地下水位多枝柽柳幼苗光合作用及抗逆性变化[J].广东农业科学,2015,9:32-39.
[17] Wang W,Wang R Q,Yuan Y F,et al.Effects of salt and water stress on plant biomass and photosynthetic characteristics of Tamarisk (Tamarix chinensis Lour.) seedlings[J].African Journal of Biotechnology,2011,10(78):17981-17989.
[18] 张利刚,曾凡江,刘波,等.绿洲-荒漠过渡带四种植物光合及生理特征的研究[J].草业学报,2012,21(1):103-111.
[19] 邓雄,李小明,张希明,等.四种荒漠植物的光合响应[J].生态学报,2003,23(3):598-605.
[20] 王会提,曾凡江,张波,等.不同种植方式下柽柳光合生理参数光响应特性研究[J].干旱区地理,2015,38(4):753-762.
[21] 余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1999:262-276.
[22] 王曼.克里雅河流域水盐梯度下三种荒漠植物的生态响应研究[D].乌鲁木齐:新疆大学,2014.
[23] 夏江宝,张光灿,刘刚,等.不同土壤水分条件下紫藤叶片生理参数的光响应[J].应用生态学报,2007,18(1):30-34.
[24] 丁俊祥,邹杰,唐立松,等.沼泽、盐化沙丘过渡带和沙丘生境下芦苇的光合及生理生化特性[J].生态学报,2015,35(16):5316-5323.
[25] Farquhar G D,Sharkey T D.Stomatal conductance and photosynthesis[J].Annual Rreview of Plant Physiology,1982,33(1):317-345.
[26] 刘冰,赵文智.荒漠绿洲过渡带柽柳和泡泡刺光合作用及水分代谢的生态适应性[J].中国沙漠,2009,29(1):101-107.
[27] 张淑勇,周泽福,夏江宝,等.不同土壤水分条件下小叶扶芳藤叶片光合作用对光的响应[J].西北植物学报,2007,27(12):2514-2521.
[28] 蒋高明.植物生理生态学[M].北京:高等教育出版社,2004:65-66.
[29] 李菊艳,赵成义,闫映宇,等.不同盐分梯度下胡杨幼苗的光合-光响应特征[J].干旱区研究,2014,31(4):728-733.
[30] 严昌荣,韩兴国,陈灵芝.六种木本植物水分利用效率和其小生境关系研究[J].生态学报,2001,21(11):1952-1956.
[31] 解婷婷,苏培玺,松爽.黑河中游边缘绿洲不同水分条件对青贮玉米叶片光合特性及产量的影响[J].西北农业学报,2009,18(6):127-133.