img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Morphological Structure and Biomass Allocation of Echinops gmelini in Different Habitats

  • Wang Yanli ,
  • Qi Xinyu ,
  • Yang Haotian ,
  • Song Guang ,
  • Du Jun
Expand
  • 1. Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Couege of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

Received date: 2017-03-12

  Revised date: 2017-04-24

  Online published: 2018-11-06

Abstract

Annual species are a major component of sand ecosystem herbaceous vegetation. Echinops gmelini is widely distributed in desert regions, which contains characteristics of germination early, high density, fast growth and reproduction ratio higher. And it is the most important component of desert communities at late spring and early summer. This paper aims are with the evolution of the sand habitats restoration and vegetation that morphology and biomass allocation characteristics of E.gmelini will change and it has instruction significance for soil habitat restoration? This study analyzes E. gmelini morphology and biomass allocation characteristics in the different stages of vegetation restoration of desert. The results showed that:(1) The preliminary stability of sand surface conditions are conducive to the growth of E. gmelini and then present a trend of population decline after a long succession. (2) The relationships between aboveground biomass and belowground biomass were isometric in all habitats, which did support isometric scaling hypothesis.In addition, aboveground biomass and leaf biomass, aboveground biomass and leaf biomass were all allometric in four habitats. (3)Plant height, inflorescence number and the ground biomass had significant or extremely significant positive correlation that showed a good synergy change trend.

Cite this article

Wang Yanli , Qi Xinyu , Yang Haotian , Song Guang , Du Jun . Morphological Structure and Biomass Allocation of Echinops gmelini in Different Habitats[J]. Journal of Desert Research, 2018 , 38(4) : 756 -764 . DOI: 10.7522/j.issn.1000-694X.2017.00043

References

[1] Bernardverdier M,Navas M,Vellend M,et al.Community assembly along a soil depth gradient:contrasting patterns of plant trait convergence and divergence in a mediterranean rangeland[J].Journal of Ecology,2012,100(6):1422-1433.
[2] 史元春,赵成章,宋清华,等.兰州北山刺槐枝叶性状的坡向差异性[J].植物生态学报,2015(4):362-370.
[3] Reyer C P,Leuzinger S,Rammig A,et al.A plant's perspective of extremes:terrestrial plant responses to changing climatic variability[J].Global Change Biology,2013,19(1):75-89.
[4] Shan L,Zhang X,Wang Y,et al.Influence of moisture on the growth and biomass allocation in Haloxylon ammodendron and Tamarix ramosissima seedlings in the shelterbelt along the tarim desert highway,xinjiang,China[J].Science Bulletin,2009,53(S2):93-101.
[5] Falster D S,Westoby M.Plant height and evolutionary games[J].Trends in Ecology and Evolution,2003,18(7):337-343.
[6] King D A.Allocation of above-ground growth is related to light in temperate deciduous saplings[J].Functional Ecology,2003,17(4):482-488.
[7] Muller I,Schmid B,Weiner J.The effect of nutrient availability on biomass allocation in 27 species of herbaceous plants[J].Perspectives in Plant Ecology Evolution and Systematics,2000,3(2):115-127.
[8] Cornelissen J H C,Lavorel S,Garnier E,et al.A handbook of protocols for standardized and easy measurement of plant functional traits worldwide[J].Australian Journal of Botany,2003,51(4):335-380.
[9] Dong M,De Kroon H.Plasticity in morphology and biomass allocation in Cynodon dactylon,a grass forming stolons and rhizomes[J].Oikos,1994,70(1):99-106.
[10] Fullen M A.Desertification and reclamation in north-central China[J].AMBIO:A Journal of the Human Environment,1994,23:131-135.
[11] Li S,Werger M J A,Zuidema P A,et al.Seedlings of the semi-shrub Artemisia ordosica are resistant to moderate wind denudation and sand burial in mu us sandland,China[J].Trees-structure and Function,2010,24(3):515-521.
[12] Li X R,Xiao H L,He M Z,et al.Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions[J].Ecological Engineering,2006,28(2):149-157.
[13] Coleman D.Ecology of desert systems[J].Agriculture,Ecosystems & Environment,2003,94(3):363-364.
[14] 李新荣,周海燕,王新平,等.中国干旱沙区的生态重建与恢复:沙坡头站60年重要研究进展综述[J].中国沙漠,2016,36(2):247-264.
[15] 李新荣,张志山,黄磊,等.我国沙区人工植被系统生态-水文过程和互馈机理研究[J].科学通报,2013(增刊1):397-410.
[16] Li X R,Kong D S,Tan H J,et al.Changes in soil and vegetation following stabilisation of dunes in the southeastern fringe of the tengger desert,China[J].Plant and Soil,2007,300(1/2):221-231.
[17] 唐进年,彭金凤,徐先英,等.一年生荒漠植物的生态功能及在沙地植被恢复与重建中的作用[J].甘肃科技,2006(10):212-215.
[18] 王雪芹,蒋进,雷加强,等.古尔班通古特沙漠短命植物分布及其沙面稳定意义[J].地理学报,2003,58(4):598-605.
[19] 中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1996.
[20] 中国科学院甘肃省冰川冻土沙漠研究所沙漠研究室.中国沙漠地区药用植物[M].兰州:甘肃人民出版社,1972:166.
[21] 李新荣,张志山,刘玉冰,等.中国沙区生态重建与恢复的生态水文学基础[M].北京:科学出版社,2016:415-459.
[22] Li X R,Zhou H Y,Wang X P.The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the tengger desert,northern China[J].Plant and Soil,2003,251(2):237-245.
[23] Niklas K J,Enquist B J.Invariant scaling relationships for interspecific plant biomass production rates and body size[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(5):2922-2927.
[24] Warton D I,Wright I J,Falster D S,et al.Bivariate line-fitting methods for allometry[J].Biological reviews of the Cambridge Philosophical Society,2006,81(2):259-291.
[25] Li X R,Ma F Y,Xiao H L,et al.Long-term effects of revegetation on soil water content of sand dunes in arid region of northern China[J].Journal of Arid Environments,2004,57(1):1-16.
[26] Wang X,Li X,Xiao H,et al.Effects of surface characteristics on infiltration patterns in an arid shrub desert[J].Hydrological Processes,2007,21(1):72-79.
[27] Holloway G J.Phenotypic plasticity:beyond nature and nurture[J].Heredity,2002,89(6):410-410.
[28] 黄迎新,赵学勇,张洪轩,等.沙米表型可塑性对土壤养分、水分和种群密度变化的响应[J].应用生态学报,2008,12:2593-2598.
[29] 张志山,樊恒文,赵金龙,等.沙漠人工植物群落的根系分布及动态[J].中国沙漠,2006,26(4):637-643.
[30] 郝虎东,田青松,石凤翎,等.无芒雀麦地上生物量及各构件生物量分配动态[J].中国草地学报,2009,4:85-90.
[31] 李涛.荒漠植物异速生长指数及其空间格局适应降雨梯度变化的规律与机制研究[D].兰州:兰州大学,2010.
[32] Zhou X,Zhang Y,Niklas K J.Sensitivity of growth and biomass allocation patterns to increasing nitrogen:a comparison between ephemerals and annuals in the gurbantunggut desert,north-western China[J].Annal of Botany,2014,113(3):501-511.
[33] Aronson J N,Kigel J,Shmida A.Reproductive allocation strategies in desert and mediterranean populations of annual plants grown with and without water stress[J].Oecologia,1993,93(3):336-342.
[34] Niklas K J,Enquist B J.Invariant scaling relationships for interspecific plant biomass production rates and body size[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(5):2922-2927.
[35] 陆霞梅,周长芳,安树青,等.植物的表型可塑性、异速生长及其入侵能力[J].生态学杂志,2007(9):1438-1444.
[36] Enquist B J,Niklas K J.Global allocation rules for patterns of biomass partitioning in seed plants[J].Science,2002,295(5559):1517-1520.
[37] Niklas K J.Modelling below-and above-ground biomass for non-woody and woody plants[J].Annal of Botany,2005,95(2):315-321.
[38] 陶冶,张元明,全永威,等.准噶尔荒漠小山蒜的形态与生物量特征及其相互关系[J].中国沙漠,2012,32(5):1328-1334.
[39] 陶冶,张元明.准噶尔荒漠6种类短命植物生物量分配与异速生长关系[J].草业学报,2014(2):38-48.
[40] 高景,王金牛,徐波,等.不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J].植物生态学报,2016(8):775-787.
Outlines

/