Reaserch on interaction relationship between vegetation community and soil properties has significance to understanding the structure and funcation. Through the systematic sampling and survey of 21 samples plots of 20 m×20 m dimensions, based on the analysis of the characteristics of communities and soil nutrient, the relationship between species distribution of communities and soil nutrient were investigated with the methods of canonical corresponding analysis (CCA). The results show that:there were 27 kinds of species in study area, which belong to 15 families and 26 genera.The majority of species were Chenopodiaceae plant and accounted for 29.6% of total species number.The species richness of Tamarix chinensis community was the highest, and that of Populus euphratica was the lowest. Four vegetation cover including T. chinensis community, Lycium ruthenicum community, Haloxylon ammodendron community and Calligonum mongolicum community in edge of Dunhuang Oasis were selected as a case study. Soil samples were collected at depths of 0-5, 5-20, 20-40, 40-60 and 60-80 cm, to analyze their physicochemical properties.The soil in depths of 80 cm organic matter content (SOM), total nitrogen (TN), available phosphorus (AP), available potassium (AK) decreased in order of T. chinensis > L.ruthenicum > H. ammodendron > C. mongolicum; Total phosphorus (TP), total salt (TS) and available nitrogen (AN) decreased in order of T. chinensis > L. ruthenicum > C. mongolicum > H.ammodendron; Total potassium (TK) decreased in order of L. ruthenicum > T. chinensis > H. ammodendron > C. mongolicum; pH decreased in order of T. chinensis > L. ruthenicum > T. chinensis. There were significant difference of each nutrient index among different vegetation cover. The TN, SOM, TS, AN and AK of T. chinensis and L. ruthenicum community presented a decreasing trend with the increase of soil depths, which reflected an obvious surface aggregation effect. That of H.ammodendron and C. mongolicum community were in a fluctuation trend. With increase of soil depths, the content of TP, TK and AP increased first and then decrease in T. chinensis and L. ruthenicum community, which of H. ammodendron and C. mongolicum community were also in a fluctuation trend. The trend of pH all four community showed a fluctuation. The result of CCA ordination show that importance rank of environmental factors which regulated the distribution of species in study area were TN > pH > TK. Soil total nitrogen is an important regulatory factor for the distribution of plant communities.
[1] 陈玉福,董鸣.毛乌素沙地景观的植被与土壤特征空间格局及其相关分析[J].植物生态学报,2001,25(3):265-269.
[2] Tapia-torres Y,L Pez-lozano N E,Souza V,et al.Vegetation-soil system controls soil mechanisms for nitrogen transformations in an oligotrophic Mexican desert[J].Journal of Arid Environments,2015,114:62-69.
[3] Mcauliffe J R.Landscape evolution,soil formation,and ecological Patterns and Processes in Sonoran Desert bajadas[J].Ecological Monographs,1994,64(2):112-148.
[4] 陈伟涛,王焰新,孙自永,等.干旱内陆区依赖地下水的生态系统研究:以敦煌盆地为例[J].第四纪研究,2014,34(5):950-958.
[5] 张喜风,张兰慧,顾娟,等.敦煌绿洲地下水时空变异特征及其对土地利用/覆被变化的响应分析[J].兰州大学学报:自然科学版,2014(3):311-317.
[6] 马利邦,牛叔文,杨丽娜.水资源利用对敦煌市生态环境演变的影响分析[J].自然资源学报,2012,27(9):1531-1542.
[7] 张明泉,赵转军,曾正中.敦煌盆地水环境特征与水资源可持续利用[J].干旱区资源与环境,2003,17(4):71-77.
[8] 丘明新,杨祖成.甘肃疏勒河中、下游地区地下水位下降和土壤盐渍化对草甸植被的影响及其解决的途径[J].生态学杂志,1986(4):46-49.
[9] 蔡正旺,苏雪,牟迈,等.甘肃敦煌南湖自然保护区生物多样性及保护对策[J].西北师范大学学报:自然科学版,2007,43(6):71-74+78.
[10] 刘旻霞,袁海峰.敦煌西湖自然保护区湿地生物多样性及保护对策研究[J].干旱区资源与环境,2007,21(11):75-79.
[11] 代雪玲,董治宝,蔺菊明,等.敦煌阳关自然保护区湿地植物群落数量分类和排序[J].生态科学,2015,34(5):129-134.
[12] 陈伟涛,孙自永,李显巨,等.内陆干旱区天然植物群落遥感制图研究——以敦煌盆地为例[J].干旱区地理,2014,37(6):1257-1263.
[13] 孙飞达,陈文业,袁海峰,等.甘肃敦煌西湖荒漠-湿地生态系统土壤水分空间异质性及其影响因子研究[J].西北植物学报,2016,36(1):165-173.
[14] 陈文业,赵明,张继强,等.甘肃敦煌西湖荒漠-湿地生态系统土壤水分含量对植被特征的影响[J].林业科学,2015,51(11):8-16.
[15] 刘旻霞.敦煌西湖自然保护区生物多样性特征及生境质量评价[J].干旱区资源与环境,2009(3):171-175.
[16] 郑姚闽,崔国发,雷霆,等.甘肃敦煌西湖湿地植物群落平均盖度与土壤含盐量耦合关系[J].生态学报,2009,29(9):4665-4672.
[17] 李亮.土壤-地下水系统对天然植被生长的影响研究:以敦煌盆地为例[D].北京:中国地质大学,2013.
[18] 戚登臣,陈文业,张继强,等.敦煌西湖湿地生态系统现状、退化原因及综合修复对策[J].草业学报,2010,19(4):194-203.
[19] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:189-200.
[20] 戈峰.现代生态学[M].北京:科学出版社,2000:156-157.
[21] 陈文业,赵明,张继强,等.敦煌西湖荒漠-湿地生态系统植被与土壤水分空间异质性研究[J].冰川冻土,2015,37(6):1670-1679.
[22] 郑姚闽,崔国发,雷霆,等.甘肃敦煌西湖多枝柽柳群落特征和种群格局[J].北京林业大学学报,2010,32(4):34-44.
[23] 张瑾,陈文业,张继强,等.甘肃敦煌西湖荒漠湿地生态系统优势植物种群分布格局及种间关联性[J].中国沙漠,2013,33(2):349-357.
[24] 李文斌,李新平.陕北风沙区不同植被覆盖下的土壤养分特征[J].生态学报,2012,32(22):6991-6999.
[25] 罗友进,赵光,高明,等.不同植被覆盖对土壤有机碳矿化及团聚体碳分布的影响[J].水土保持学报,2010,24(6):117-122.
[26] 陶冶,吴甘霖,刘耀斌,等.古尔班通古特沙漠典型灌木群落土壤化学计量特征及其影响因素[J].中国沙漠,2017,37(2):305-314.
[27] 陈广生,曾德慧,陈伏生,等.干旱和半干旱地区灌木下土壤"肥岛"研究进展[J].应用生态学报,2003,14(12):2295-2300.
[28] 苏永中,赵哈林,张铜会.几种灌木、半灌木对沙地土壤肥力影响机制的研究[J].应用生态学报,2002,13(7):802-806.
[29] 曹艳峰,丁俊祥,于亚军,等.不同质地土壤中荒漠灌木梭梭"肥岛"的初步探讨[J].土壤学报,2016,53(1):261-270.
[30] 雷金银,班乃荣,张永宏,等.柽柳对盐碱土养分与盐分的影响及其区化特征[J].水土保持通报,2011,31(2):73-76.
[31] 曹国栋,陈接华,夏军,等.玛纳斯河流域扇缘带不同植被类型下土壤物理性质[J].生态学报,2013,33(1):195-204.
[32] 王凯博,时伟宇,上官周平.黄土丘陵区天然和人工植被类型对土壤理化性质的影响[J].农业工程学报,2012,28(15):80-86.
[33] 高静静.风蚀和放牧对温带草原碳循环的影响[D].河南开封:河南大学,2013.
[34] 罗万银,董治宝.风蚀对土壤养分及碳循环影响的研究进展与展望[J].地理科学进展,2005.24(4):75-83.
[35] Kirkby E A.plant growth in relation to nitrogensupply[J].Ecological Bulletins,1981,33:249-267.
[36] Rutigliano F A,D'ascoli R,Virzo Santo de A.Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover[J].Soil Biology and Biochemistry,2004,36(11):1719-1729.
[37] 孙向阳.土壤学[M].北京:中国林业出版社,2004:248-249.
[38] 曹文侠,李文,李小龙,等.施氮对高寒草甸草原植物群落和土壤养分的影响[J].中国沙漠,2015,35(3):658-666.
[39] 杜峰,梁宗锁,徐学选,等.陕北黄土丘陵区撂荒草地群落生物量及植被土壤养分效应[J].生态学报,2007,27(5):1673-1683.
[40] 杨丽霞,陈少锋,安娟娟,等.陕北黄土丘陵区不同植被类型群落多样性与土壤有机质、全氮关系研究[J].草地学报,2014,22(2):291-298.
[41] 王蒙,董治宝,罗万银,等.巴丹吉林沙漠南缘植被物种多样性及其与土壤特性的关系[J].西北植物学报,2015,35(2):379-388.
[42] 赵景学,曲广鹏,多吉顿珠,等.藏北高寒植被群落物种多样性与土壤环境因子的关系[J].干旱区资源与环境,2011,25(6):105-108.
[43] 沙威,董世魁,刘世梁,等.阿尔金山自然保护区植物群落生物量和物种多样性的空间格局及其影响因素[J].生态学杂志,2016,35(2):330-337.