img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Characteristics of Aeolian Sediment Flux Structure over Different Underlying Surfaces in Semi-arid Area

  • Yang Huan ,
  • Li Yuqiang ,
  • Wang Xuyang ,
  • Niu Yayi ,
  • Gong Xiangwen ,
  • Yu Peidong
Expand
  • 1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

Received date: 2017-10-27

  Revised date: 2017-11-28

  Online published: 2018-12-05

Abstract

Based on measured data from sand traps and weather station from April to May in 2017, aeolian sediment flux structure at 0-75 cm is analyzed over three typical types of underlying surface which included moving dune, semi-fixed dune and fixed dune in Korqin Sandy Land. The results showed:(1)The percentage of total sand transport flux decreased with the increase of height while the percentage of total sand transport flux increased with the increase of wind speeds, and 92.20%-95.60% of the total sand transport flux was distributed within the height 0-21 cm.(2)The total sand transport rate sequences are moving dune>semi-fixed dune> fixed dune. When both the total sand transport rate and the wind speeds at height of 200 cm are calculated through function fitting analysis, moving dune present the power function relation, and semi-fixed dune and fixed dune present the exponential function relation.(3)When both the sand transport rate at the each level and the wind speeds at height of 200 cm are calculated through function fitting analysis, the proposed power function of moving dune(R2 ≥ 0.9045) and semi-fixed dune(R2 ≥ 0.9681) is better than exponential function, and the exponential function of fixed dune(R2 ≥ 0.9230) is better than the power function.(4)At certain height, the sand transport rate of three types of sand dunes increases with the increase of wind speed. Under certain wind speed conditions, the sand transport rate decreased with the increase of the height.(5)The characteristic values of the three types of dunes with the increase of wind speed present a gradually increasing trend, moving dune(λ>1) still have the ability of erosion surface to continue transport sand particle; The semi-fixed dune showed a gradually weak erosion state when the wind speed was over 9.0 m·s-1. The the surface of fixed dune(λ<1) is mainly accumulated.(6)The three types of sand dunes are composed of fine particles from 0.1 mm to 0.25 mm, and the sediment yield is 50.09%-85.11% at the height of 0-30 cm, and the sediment yield is 43.53%-75.53% at the 30-75 cm height.

Cite this article

Yang Huan , Li Yuqiang , Wang Xuyang , Niu Yayi , Gong Xiangwen , Yu Peidong . Characteristics of Aeolian Sediment Flux Structure over Different Underlying Surfaces in Semi-arid Area[J]. Journal of Desert Research, 2018 , 38(6) : 1144 -1152 . DOI: 10.7522/j.issn.1000-694X.2017.00092

References

[1] 王静.荒漠草原地表风沙流变化研究[D].呼和浩特:内蒙古师范大学,2012.
[2] 董治宝,郑晓静.中国风沙物理研究50 a(Ⅱ)[J].中国沙漠,2005,25(6):3-23.
[3] 董治宝.中国风沙物理研究五十年(Ⅰ)[J].中国沙漠,2005,25(3):293-305.
[4] 董治宝.拜格诺的风沙物理学研究思想[J].中国沙漠,2002,22(2):101-105.
[5] Bagnold R A.The Physics of Blown Sand and Desert Dunes[M].New York,USA:William Morrow & Company,1941:264.
[6] 拜格诺R A.风沙和荒漠沙丘物理学[M].钱宁,林秉南,译.北京:科学出版社,1954.
[7] Dong Z B,Lu J F,Man D Q,et al.Equations for the near surface mass flux density profile of wind-blown sediments[J].Earth Surface Processes and Landforms,2011,36(10):1292-1299.
[8] 张正偲,董治宝.腾格里沙漠东南部野外风沙流观测[J].中国沙漠,2013,33(4):973-980.
[9] Dong Z B,Liu X P,Wang H T,et al.The flux profile of a blowing sand cloud:a wind tunnel investigation[J].Geomorphology,2003,49:219-230.
[10] Bauer B O,Houser C A,Nicking W G.Analysis of velocity profile measurements from wind-tunnel experiments with saltation[J].Geomorphology,2004,59:81-98.
[11] Kang L Q,Guo L J,Gu Z M,et al.Wind tunnel experimental investigation of sand velocity in aeolian sand transport[J]. Geomorphology,2008,97:438-450.
[12] Anderson R S,Haff P K.Simulation of aeolian saltation[J].Science,1988,241:820-829.
[13] 杜鹤强,韩致文,王涛,等.新月形沙丘表面风速廓线与风沙流结构变异研究[J].中国沙漠,2012,32(1):9-16.
[14] 张正偲,董治宝,赵爱国.2006年春季天气背景下腾格里沙漠近地面气象要素与输沙通量的变化趋势[J].科学通报,2008(16):1953-1960.
[15] Ellis J T,Li B,Farrell E J,et al.Protocols for characterizing aeolian mass-flux profiles[J].Aeolian Research,2009,1(1):19-26.
[16] Chepil W S.Dynamics of wind erosion[J].Soil Science,1945,60:97-411.
[17] 段翰晨,王涛,薛娴,等.科尔沁沙地沙漠化时空演变及其景观格局——以内蒙古自治区奈曼旗为例[J].地理学报,2012,67(7):917-928.
[18] 赵哈林,李瑾,周瑞莲,等.风沙流短暂吹袭对樟子松幼苗光合蒸腾特性的影响[J].中国沙漠,2017,37(2):254-260.
[19] 张华,李锋瑞,张铜会,等.科尔沁沙地不同下垫面风沙流结构与变异特征[J].水土保持学报,2002(2):20-23.
[20] 朱震达,吴正,刘恕.中国沙漠概论[M].北京:科学出版社,1980.
[21] 吴正.风沙地貌与治沙工程学[M].北京:科学出版社,2003.
[22] 边凯,张伟民,谭立海,等.偏西风作用下敦煌月牙泉金字塔沙山顶部风沙流初步观测研究[J].中国沙漠,2016,36(6):1503-1511.
[23] 李得禄,满多清,朱国庆,等.丘间低地不同部位风沙流结构特征[J].中国沙漠,2012,32(5):1210-1215.
[24] 韩致文,缑倩倩,杜鹤强,等.新月形沙丘表面100 cm高度内风沙流输沙量垂直分布函数分段拟合[J].地理科学,2012,32(7):892-897.
[25] 吴晓旭,邹学勇,王仁德,等.毛乌素沙地不同下垫面的风沙运动特征[J].中国沙漠,2011,31(4):828-835.
[26] 陈新闯,郭建英,董智,等.乌兰布和沙漠流动沙丘下风向降尘粒度特征[J].中国沙漠,2016,36(2):295-301.
[27] 王翠,李生宇,雷加强,等.近地表风沙流结构对过渡带不同下垫面的响应[J].水土保持学报,2014,28(3):52-56+71.
[28] 包岩峰,丁国栋,吴斌,等.毛乌素沙地风沙流结构的研究[J].干旱区资源与环境,2013,27(2):118-123.
[29] 刘芳,郝玉光,辛智鸣,等.乌兰布和沙漠东北缘地表风沙流结构特征[J].中国沙漠,2014,34(5):1200-1207.
[30] 杨兴华,何清,艾力·买买提明.塔克拉玛干沙漠腹地塔中地区风沙流输沙特征研究[J].干旱区地理,2011,34(3):479-485.
[31] 马世威.风沙流结构的研究[J].中国沙漠,1988,8(3):11-25.
[32] 徐军,郝玉光,刘芳,等.乌兰布和沙漠不同下垫面风沙流结构与变异特征[J].水土保持研究,2013(4):95-98.
[33] 周颖,曹月娥,杨建军,等.古尔班通古特沙漠东缘风沙流结构特征[J].水土保持学报,2016,30(3):78-83.
Outlines

/