img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Relationship between Leaf Vein Density and the Lowest Water Potential under Drought Stress in four Caragana Species

  • Yao Guangqian ,
  • Wei Yang ,
  • Bi Minhui ,
  • Nie Zhengfei ,
  • Fang Xiangwen
Expand
  • State Key Laboratory of Grassland Agro-Ecosystems/School of Life Sciences, Lanzhou University, Lanzhou 730000, China

Received date: 2017-05-03

  Revised date: 2017-09-07

  Online published: 2018-12-05

Abstract

A comparison of the closely-related species Caragana intermedia and C. microphylla from Inner Mongolia to C. pruinosa and C. spinosa from Xinjiang was conducted to examine whether lowest predawn leaf water potential(Ψleaf) measured under severe drought stress was associated with variation in vein architecture(1°, 2°, 3° and minor vein density(t/b)3). The results showed that the lowest leaf water potential(Ψleaf) of C. intermedia and C. microphylla respectively was -6.0 MPa and -6.5 MPa, while C. pruinosa and C. spinosa respectively was -4.0 MPa and -4.4 MPa. The lowest water potential had no linear relation with 1° and 2° vein densities, while increasing with the 3°-order vein and minor vein densities; The lowest water potential incresed with the(t/b)3 of the ratio of conduit wall thickness to lumen diameter in 1°, 2°, 3° and minor vein. The research suggested that the increased density of tertiary veins, minor veins in Inner Mongolia species and the enhanced ability of minor veins to resist collapse promoted the decline of lowest water potential under leaf drought stress. compared with Caragana species growing in Xinjiang,

Cite this article

Yao Guangqian , Wei Yang , Bi Minhui , Nie Zhengfei , Fang Xiangwen . Relationship between Leaf Vein Density and the Lowest Water Potential under Drought Stress in four Caragana Species[J]. Journal of Desert Research, 2018 , 38(6) : 1252 -1258 . DOI: 10.7522/j.issn.1000-694X.2017.00089

References

[1] Engelbrecht B M J.Plant ecology:forests on the brink[J].Nature,2012,491(7426):675-677.
[2] Choat B,Jansen S,Brodribb T J,et al.Global convergence in the vulnerability of forests to drought[J].Nature,2012,491(7426):752-755.
[3] Mckown A D,Cochard H,Sack L.Decoding leaf hydraulics with a spatially explicit model:principles of venation architecture and implications for its evolution[J].The American Naturalist,2010,175(4):447-460.
[4] Brodribb T J,Feild T S.Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification[J].Ecology Letters,2010,13(2):175-183.
[5] Hao G Y,Hoffmann W A,Scholz F G,et al.Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems[J].Oecologia,2008,155(3):405-415.
[6] Scoffoni C,Rawls M,Mckown A,et al.Decline of leaf hydraulic conductance with dehydration:relationship to leaf size and venation architecture[J].Plant Physiology,2011,156(2):832-843.
[7] Sack L,Scoffoni C,Mckown A D,et al.Developmentally based scaling of leaf venation architecture explains global ecological patterns[J].Nature Communications,2012,3(837):837.
[8] Blackman C J,Brodribb T J,Jordan G J.Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms[J].New Phytologist,2010,188(4):1113-1123.
[9] Augé R M,Duan X R,Croker J L,et al.Foliar dehydration tolerance of twelve deciduous tree species[J].Journal of Experimental Botany,1998,49(321):753-759.
[10] 周道玮.锦鸡儿属植物分布研究[J].植物研究,1996(4):428-435.
[11] 马成仓.内蒙古高原锦鸡儿属(Caragana)几种优势植物生态适应性与地理分布的关系[D].天津:南开大学,2004:1-138.
[12] 赵一之.小叶、中间和柠条3种锦鸡儿的分布式样及其生态适应[J].生态学报,2005,25(12):3411-3414.
[13] 张明理,黄永梅,康云,等.锦鸡儿属植物在鄂尔多斯高原区系和植被中的作用[J].植物研究,2002,22(4):497-502.
[14] 李蒙蒙,刘丹,刘玉冰,等.基于叶片微形态结构评价10种锦鸡儿属(Caragana)植物的抗旱特征[J].中国沙漠,2016,36(3):708-717.
[15] 张新时.毛乌素沙地的生态背景及草地建设的原则与优化模式[J].植物生态学报,1994,18(1):1-16.
[16] 周道伟,刘钟龄,马毓泉.豆科锦鸡儿属(Caragana Fabr.)植物地理分布与分化研[J].植物研究,2005,25(4):271-287.
[17] Fang X W,Turner N C,Xu D H,et al.Limits to the height growth of Caragana korshinskii resprouts[J].Tree Physiology,2013,33(3):275.
[18] Fang X W,Turner N C,Palta J A,et al.The distribution of four Caragana species is related to their differential responses to drought stress[J].Plant Ecology,2014;215(1):133-142.
[19] 杜学武,郭晓玲,郭春玲,等.锦鸡儿治疗类风湿性关节炎临床研究[J].中国民族医药杂志,1998,4(2):11-13.
[20] 金景姬,方文龙,金正男,等.小叶锦鸡儿的抗炎作用[J].中国中药杂志,1993,19(5):306-308.
[21] 胡荫.锦鸡儿煎剂对体液免疫的影响[J].包头医学,1992,16(4):9.
[22] Sack L,Dietrich E M,Streeter C M,et al.Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(105):1567-1572.
[23] Blackman C J,Brodribb T J,Jordan G J.Leaf hydraulics and drought stress:response,recovery and survivorship in four woody temperate plant species[J].Plant Cell & Environment,2009,32(11):1584-1595.
[24] Brodribb T J,Cochard H.Hydraulic failure defines the recovery and point of death in water-stressed conifers[J].Plant Physiology,2009,149(1):575-584.
[25] Fu P L,Jiang Y J,Wang A Y,et al.Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian,tropical dry karst forest[J].Annals of Botany,2012,110(1):189-199.
[26] 石丽丽,蒋志荣,方向文.新疆沙冬青(Ammopiptanthus nanus)和蒙古沙冬青(A.monglicus)叶片解剖特征及抗旱性[J].中国沙漠,2018,38(1):157-162.
[27] 李江风.新疆气候[M].北京:气象出版社,1991.
[28] Allen C D.Mechanisms of plant survival and mortality during drought:why do some plants survive while others succumb to drought?[J].New Phytologist,2008,178(4):719-739.
Outlines

/