img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Large-Eddy Simulation of Summer Clear Sky Convective Boundary Layer in the Taklimakan Desert

  • Wang Minzhong ,
  • Xu Hongxiong ,
  • Wang Yinjun ,
  • Ali Mamtimin ,
  • Zhang Jiantao
Expand
  • 1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;
    2. Institute of Desert Meteorology, Chinese Meteorological Administration, Urumqi 830002, China

Received date: 2018-03-07

  Revised date: 2018-03-28

  Online published: 2018-12-05

Abstract

Large-eddy simulation of clear sky convective boundary layer is carried out with sounding and surface flux observation data in the hinterland of Taklimakan Desert so as to explore the structure of the turbulence and the law of heat convection of summer clear sky boundary layer in the Desert. The study shows that:(1) Under the summer clear sky in the Taklimakan Desert, the boundary layer turbulent kinetic energy is mainly generated by the surface thermal buoyancy convection. The dissipation of turbulent kinetic energy triggered by small-scale eddy weakens as the increase of the height. The variation of the boundary layer turbulent kinetic energy has the feature of intermission.(2) Organized thermal bubbles appear in the boundary layer. The maximum ascending speed of the thermal bubbles exceeds 4.0 m·s-1; the thermal convection in Taklimakan Desert generally shows the pinnate and network-like distribution, with a large area of sinking divergence around the upward motion area.(3) The surface sensible heat and the intensity at the top of the inversion layer are two important factors controlling and influencing the development of the convective boundary layer in Taklimakan Desert. If the sensible heat increases, the boundary layer becomes warmer and its height also increases; if the sensible heat decreases, the boundary layer becomes colder and its height also decreases. When the sensible heat remains the same, the stronger the intensity at the top of the inversion layer is, the more negative influence it will have on the development of the convective boundary layer, vice versa.

Cite this article

Wang Minzhong , Xu Hongxiong , Wang Yinjun , Ali Mamtimin , Zhang Jiantao . Large-Eddy Simulation of Summer Clear Sky Convective Boundary Layer in the Taklimakan Desert[J]. Journal of Desert Research, 2018 , 38(6) : 1275 -1286 . DOI: 10.7522/j.issn.1000-694X.2018.00028

References

[1] 苗世光,蒋维楣,李昕,等.对流边界层大涡模式的改进及对夹卷速度的研究[J].大气科学,2001,25(1):25-37.
[2] 蔡旭晖,陈家宜.一个对流边界层大涡模式的建立与调试[J].大气科学,1995,19(4):415-421.
[3] Heus T,van Heerwaarden C C,Jonker H J J,et al.Formulation of the Dutch Atmospheric Large-Eddy Simulation(DALES) and overview of its applications[J].Geoscientific Model Development,2010,3:415-444.
[4] Deardorff J W.Numerical investigation of neutral and unstable planetary boundary layers[J].Journal of Atmospheric Sciences,1972,29:91-115.
[5] Deardorff J W.Theoretical expression for the counter-gradient vertical heat flux[J].Journal of Geophysical Research,1972,77:5900-5904.
[6] Deardorff J W.Stratocumulus-capped mixed layers derived from a three dimensional model[J].Boundary-Layer Meteorology,1980,18:495-527.
[7] Kim S W,Park S U.Coherent structures near the surface in a strongly sheared convective boundary layer generated by large-eddy simulation[J].Boundary-Layer Meteorology,2003,106:35-60.
[8] Letzel M O,Krane M,Raasch S.High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale[J].Atmospheric Environment,2008,42:8770-8784.
[9] Parker D J,Marsham J H,Rosenberg P D,et al.The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer[J].Journal of the Atmospheric Sciences,2015,72:693-713.
[10] 黄倩,王蓉,田文寿,等.风切变对边界层对流影响的大涡模拟研究[J].气象学报,2014,72(1):100-115.
[11] Liu Y Q,He Q,Zhang H S,et al.Improving the CoLM in Taklimakan Desert hinterland with accurate key parameters and an appropriate parameterization scheme[J].Advances in Atmospheric Sciences,2012,29(2):381-390.
[12] 何清,缪启龙,李帅,等.塔克拉玛干沙漠腹地的长波辐射变化特征[J].高原气象,2009,28(3):642-646.
[13] Wei W S,Wang M Z,He Q,et al.Analyses of temperature and humidity profiles and heat balance of the surface boundary-layer in the hinterland of the Taklimakan Desert[J].Chinese Science Bulletin,2008,53(2):22-30.
[14] 何清,缪启龙,李帅,等.塔克拉玛干沙漠腹地总辐射变化特征及影响因子分析[J].中国沙漠,2008,28(5):896-902.
[15] 金莉莉,何清,买买提艾力·买买提依明,等.塔克拉玛干沙漠腹地辐射平衡和反照率变化特征[J].中国沙漠,2014,34(1):215-224.
[16] 殷代英,屈建军,余晔,等.敦煌湖泊湿地生态系统地表辐射平衡特征[J].中国沙漠,2018,38(1):172-181.
[17] 艾力·买买提明,何清,高志球,等.塔克拉玛干沙漠近地层湍流热通量计算方法比较研究[J].中国沙漠,2008,28(5):948-954.
[18] 缪启龙,李兰兰,何清,等.南疆沙漠腹地大气边界层湍流通量特征的观测研究[J].气象与减灾研究,2008,31(3):15-21.
[19] 缪启龙,温雅婷,何清,等.沙漠腹地春夏季近地层大气湍流特征观测分析[J].中国沙漠,2010,30(1):167-174.
[20] 温雅婷,缪启龙,何清,等.塔中近地层春夏季湍强和湍能变化的观测研究[J].中国沙漠,2010,30(2):439-444.
[21] 温雅婷,焦冰,缪启龙,等.塔克拉玛干沙漠腹地近地层湍流能谱特征分析[J].中国沙漠,2012,32(6):1716-1722.
[22] 李超,董治宝,陈国祥,等.柴达木盆地察尔汗盐湖北侧沙丘黏性沉积物特征[J].中国沙漠,2018,38(1):68-75.
[23] 鲍锋,董治宝.青藏铁路察尔汗盐湖段风沙活动特征[J].中国沙漠,2017,37(4):621-625.
[24] Wang M Z,Wei W S,He Q,et al.Summer atmospheric boundary layer structure in the hinterland of Taklimakan Desert,China[J].Journal of Arid Land,2016,8(6):846-860.
[25] Wang M Z,Lu H,Ming H,et al.Vertical structure of summer clear-sky atmospheric boundary layer over the hinterland and southern margin of Taklamakan Desert[J].Meteorological Applications,2016,23:438-447.
[26] 李祥余,何清,艾力·买买提明,等.塔中春季晴天近地层温度、湿度和风速廓线特征[J].干旱区地理,2008,31(3):389-396.
[27] 王敏仲,魏文寿,何清,等.风廓线雷达对塔克拉玛干沙漠晴天边界层的探测分析[J].气象,2012,38(5):577-584.
[28] 缪启龙,王晶,何清,等.南疆沙漠腹地大气边界层气象要素廓线分析[J].气象与减灾研究,2009,32(2):6-10.
[29] 王蓉.干旱区边界层对流及示踪物垂直传输的大涡模拟研究[D].兰州:兰州大学,2014:31-33.
[30] 何清.塔克拉玛干沙漠塔中大气边界层结构及地气相互作用观测研究[D].南京:南京信息工程大学,2009:30-33.
[31] Stull R B.An Introduction to Boundary Layer Meteorology[M].Dordrecht,Netherlands:Kluwer Academic Plublisher,1988:6-13.
[32] 徐祥德,王寅钧,赵天良,等.高原东南缘大气近地层湍能特征与边界层动力、热力结构相关特征[J].气象,2014,40(10):1165-1173.
[33] 徐祥德,周明煜,陈家宜,等.青藏高原地-气过程动力、热力结构综合物理图象[J].中国科学(D辑),2001,31(5):428-440.
[34] 陈陟,周明煜,钱粉兰,等.我国西部高原大气边界层中的对流活动[J].应用气象学报,2002,13(2):142-145.
[35] 蔡旭辉,陈家宜.对流边界层中泡状结构的大涡模拟研究[J].大气科学,1997,21(2):223-230.
Outlines

/