img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Growing Season Bearing Capacity of Degraded Alpine Meadow in the Qinghai-Tibet Plateau

  • Li Chengyang ,
  • Xue Xian ,
  • Lai Chimin ,
  • You Quangang ,
  • Peng Fei ,
  • Zhang Wenjuan
Expand
  • 1. Key Laboratory of Desert and Desertification, Northwest Institute of Ecol-Environmentl and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China

Received date: 2018-07-21

  Revised date: 2018-10-09

  Online published: 2018-12-05

Abstract

In recent years, grassland has been severely degraded in parts of the Qinghai-Tibet Plateau(QTP) under the combined influence of climate change and human activities. In this study, the thermal infrared heaters were used to simulate climate warming in moderately degraded and non-degraded alpine meadows in the permafrost regions of the Beiluhe basin of the QTP to study the effects of grassland degradation and climate change on the grassland quantity and quality(digestible crude protein and metabolic energy) bearing capacity in the growing season. The result showed:(1) Degradation reduced the importance value of sedges species in the community, while that of grasses and forbs species gradually increased;(2) Degradation had no significant effect on above-ground biomass of vegetation, but degradation with climate warming reduced above-ground biomass by(87.17±6.93) g·m-2 and(38.89±2.23) g·m-2 in June and September;(3) Degradation reduced the content of crude protein by 29.15% and 33.74%, but increased the content of acid detergent fiber by 11.68% and 15.34% in June and September;(4) With climate warming, degradation reduced the quantity bearing capacity and metabolic energy bearing capacity by 2.63±0.21 and 6.94±0.55 sheep unit/hectare in June, and 1.17±0.07 and 3.1±0.17 sheep unit/hectare in September. The bearing capacity in the study area was in the sequence of metabolic energy bearing capacity>digestible crude protein bearing capacity>quantity bearing capacity. The nutrients supply of forage in the growing season in the study area is sufficient to livestock, and the suitable bearing capacity is the quantity bearing capacity.

Cite this article

Li Chengyang , Xue Xian , Lai Chimin , You Quangang , Peng Fei , Zhang Wenjuan . Growing Season Bearing Capacity of Degraded Alpine Meadow in the Qinghai-Tibet Plateau[J]. Journal of Desert Research, 2018 , 38(6) : 1330 -1338 . DOI: 10.7522/j.issn.1000-694X.2018.00089

References

[1] 彭飞,薛娴,尤全刚.模拟增温对生态系统碳循环影响研究进展[J].中国沙漠,2014,34(5):1285-1292.
[2] Thomas C D,Cameron A,Green R E,et al. Extinction risk from climate change[J].Nature,2004,427(8):145-148.
[3] 高懋芳,邱建军.青藏高原主要自然灾害特点及分布规律研究[J].干旱区资源与环境,2011,25(8):101-106.
[4] Grabherr G,Gottfried M,Pauli H.Climate effects of mountain plants[J].Nature,1994,369(6480):448-450.
[5] Yao T,Pu J,Lu A,et al.Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau,China,and surrounding Regions[J].Arctic Antarctic & Alpine Research,2007,39(4):642-650.
[6] Wu Q B,Zhang T J.Recent permafrost warming on the Qinghai-Tibetan Plateau[J].Journal of Geophysical Research,2008,113:D13108.
[7] 尤全刚,薛娴,彭飞,等.高寒草甸草地退化对土壤水热性质的影响及其环境效应[J].中国沙漠,2015,35(5):1183-1192.
[8] 王文颖,王启基.高寒嵩草草甸退化生态系统植物群落结构特征及物种多样性分析[J].草业学报,2001,10(3):8-14.
[9] 姚檀栋,朱立平.青藏高原环境变化对全球变化的响应及其适应对策[J].地球科学进展,2006,21(5):459-464.
[10] You Q G,Xue X,Peng F,et al.Comparison of ecosystem characteristics between degraded and intact alpine meadow in the Qinghai-Tibetan Plateau,China[J].Ecological Engineering,2014,71:133-143.
[11] 马玉寿,郎百宁,李青云,等.江河源区高寒草甸退化草地恢复与重建技术研究[J].草业科学,2002(9):1-5.
[12] 田丽慧,张登山,彭继平,等.高寒沙地人工植被恢复区地表沉积物粒度特征[J].中国沙漠,2015,35(1):32-39.
[13] Zhou H,Zhao X,Tang Y,et al.Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China[J].Grassland Science,2005,51(3):191-203.
[14] Wang J,Zhang X,Chen B,et al.Causes and restoration of degraded alpine grassland in Northern Tibet[J].Journal of Resources and Ecology,2013,4(1):43-49.
[15] 贺有龙,周华坤,赵新全,等.青藏高原高寒草地的退化及其恢复[J].草业与畜牧,2008(11):1-9.
[16] 周华坤,赵新全,周立,等.青藏高原高寒草甸的植被退化与土壤退化特征研究[J].草业学报,2005,14(3):31-40.
[17] 江小雷,张卫国,杨振宇.黑土滩恢复演替过程中植物功能群及牧草品质变化[J].草地学报,2008(6):619-623.
[18] 周华坤,赵新全,温军,等.黄河源区高寒草原的植被退化与土壤退化特征[J].草业学报,2012,21(5):1-11.
[19] 周华坤,赵新全,周立,等.层次分析法在江河源区高寒草地退化研究中的应用[J].资源科学,2005,27(4):63-70.
[20] 张倩,李文军.分布型过牧:一个被忽视的内蒙古草原退化的原因[J].干旱区资源与环境,2008,22(12):8-16.
[21] 王明玖,马长升.两种方法估算草地载畜量的研究[J].中国草地,1994(5):19-22.
[22] 赵新全.高寒草甸生态系统与全球变化[M].北京:科学出版社,2009:1-32.
[23] 徐满厚,薛娴.青藏高原高寒草甸植被特征与温度、水分因子关系[J].生态学报,2013,33(10):3158-3168.
[24] Peng F,Xue X,Xu M,et al.Warming-induced shift towards forbs and grasses and its relation to the carbon sequestration in an alpine meadow[J].Environmental Research Letters,2017,12(4):1-22.
[25] Yang Y H,Fang J Y,Ji C J,et al. Above-and belowground biomass allocation in Tibetan grasslands[J].Journal of Vegetation Science,2009,20(1):177-184.
[26] 郝力壮,刘书杰,吴克选,等.玛多县高山嵩草草地天然牧草营养评定与载畜量研究[J].中国草地学报,2011,33(1):84-89.
[27] 孙鹏飞,崔占鸿,刘书杰,等.三江源区不同季节放牧草场天然牧草营养价值评定及载畜量研究[J].草业学报,2015,24(12):92-101.
[28] 郝力壮,王万邦,王迅,等.三江源区嵩草草地枯草期牧草营养价值评定及载畜量研究[J].草地学报,2013,21(1):56-64.
[29] 梁天刚,崔霞,冯琦胜,等.2001-2008年甘南牧区草地地上生物量与载畜量遥感动态监测[J].草业学报,2009,18(6):12-22.
[30] 陈乐乐,施建军,王彦龙,等.高寒地区不同退化程度草地群落结构特征研究[J].草地学报,2016,24(1):210-213.
[31] 柳小妮,孙九林,张德罡,等.东祁连山不同退化阶段高寒草甸群落结构与植物多样性特征研究[J].草业学报,2008,17(4):1-11.
[32] Dorji T,Moe S R,Klein J A,et al.Plant species richness,evenness,and composition along environmental gradients in an alpine meadow grazing ecosystem in Central Tibet,China[J]. Arctic Antarctic & Alpine Research,2014,46(2):308-326.
[33] Xu W,Zhu M,Zhang Z,et al. Experimentally simulating warmer and wetter climate additively improves rangeland quality on the Tibetan Plateau[J].Journal of Applied Ecology,2018,55(3):1486-1497.
[34] Wang J F,Song G,Lin J X,et al. Summer warming effects on biomass production and clonal growth of Leymus chinensis[J].Crop & Pasture Science,2010,61(8):670-676.
[35] 王合云,郭建英,董智,等.退化程度对大针茅草原植物群落结构特征及物种多样性的影响[J].干旱区资源与环境,2016,30(3):106-111.
[36] Bokdam J,Wallis M F D V.Forage quality as a limiting factor for cattle grazing in Isolated Dutch Nature Reserves[J].Conservation Biology,2010,6(3):399-408.
[37] Yu L,Zhou L,Liu W,et al.Usingremote sensing and GIS technologies to estimate grass yield and livestock carrying capacity of alpine grasslands in Golog Prefecture,China[J].Pedosphere,2010,20(3):342-351.
[38] 石岳,马殷雷,马文红,等.中国草地的产草量和牧草品质:格局及其与环境因子之间的关系[J].科学通报,2013,58(3):226-239.
[39] 肖玉,陈米贵,周杰,等.青藏高原腹地青藏苔草草原不同退化程度的植物群落特征[J].应用与环境生物学报,2014,20(4):639-645.
[40] Cantarel A A M,Bloor J M G,Soussana J F.Four years of simulated climate change reduces above-ground productivity and alters functional diversity in a grassland ecosystem[J].Journal of Vegetation Science,2012,24(1):113-126.
[41] 塔娜,桂荣,呼和.恢复阶段退化草地资源与营养评价[J].草业科学,2011,28(8):1522-1528.
[42] 陈全功.关键场与季节放牧及草地畜牧业的可持续发展[J].草业学报,2005,14(4):29-34.
Outlines

/