img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Wind Tunnel Simulation of Aeolian Sand Process in Subgrade Section of Two Typical High-Grade Highway

  • Yu Yanping ,
  • Xiao Jianhua ,
  • Qu Jianjun ,
  • Li Fang ,
  • Li Wanqiang ,
  • Pan Duoming ,
  • Wu Qingrui ,
  • Hong Xuefeng ,
  • Tian Yongzhen
Expand
  • 1. Dunhuang Gobi Desert Research Station/Gansu Center for Sand Hazard Reduction Engineering and Technology, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Highway Management Bureau of Alxa League, Alxa 750306, Inner Mongolia, China;
    4. Forest and Sand Control Research Institute of Alxa League, Alxa 750306, Inner Mongolia, China

Received date: 2018-02-03

  Revised date: 2018-04-18

  Online published: 2019-02-14

Abstract

The difference of central structure of high-grade highway will affect the process of aeolian sand transport-accumulation in the subgrade cross section in different degrees. When the height of the subgrade is 4 cm (the ratio of subgrade model to actual subgrade is 1:100), the increasing trend of leeward side sand accumulation range of anti-glare board subgrade is more pronounced with the increasing wind speed. Under the same wind speed, the range of sand accumulation on both sides of anti-glare subgrade is larger, and the corresponding scope of the engineering protection should be increased accordingly. When the subgrade height is 8 cm, the anti-glare net subgrade has a large amount of sand accumulated on the road surface and a large area covered by sand on the leeward side, therefore, the corresponding protection range should be also relatively large in actual engineering maintenance. The higher the subgrade is, the larger the corresponding scope of the engineering protection should be, and it is necessary to strengthen the maintenance of the windward slope, especially the anti-glare board subgrade. In addition, more sand control facilities should be provided beyond the range of 5H (H represents the height of highway) on the leeward side of the two high-grade subgrade, especially anti-glare subgrade, this purpose is to prevent the sand accumulated on road surface from being carried away by the reverse air flow and affecting the traffic safety. There is more sediment material accumulation on the anti-glare board subgrade leeward slope. So in order to prevent the second sand hazard endangering the safety of the highway vehicles, the leeward side of the anti-glare board subgrade also need to be focused on protection. Finally, the anti-glare board facilities should be used for the central structure of high-grade highway in the desert areas with single main wind direction.

Cite this article

Yu Yanping , Xiao Jianhua , Qu Jianjun , Li Fang , Li Wanqiang , Pan Duoming , Wu Qingrui , Hong Xuefeng , Tian Yongzhen . Wind Tunnel Simulation of Aeolian Sand Process in Subgrade Section of Two Typical High-Grade Highway[J]. Journal of Desert Research, 2019 , 39(1) : 68 -79 . DOI: 10.7522/j.issn.1000-694X.2018.00046

References

[1] 武生智,刘楠,薄天利.沙漠公路近壁流场的风洞实验和数值模拟[J].兰州大学学报(自然科学版),2008,44(4):27-34.
[2] 王振清.中国公路防沙治沙[M].沈阳:辽宁大学出版社,2000:111-113.
[3] 李驰,高瑜.沙漠公路风沙土路基风蚀破坏试验研究[J].岩土力学,2011,32(1):33-38.
[4] 李驰,高瑜,黄浩.沙漠公路风蚀破坏规律的数值模拟研究[C]//第七届全国青年岩土力学与工程会议论文集.北京,2011.
[5] 陈晓光,罗俊宝,张生辉.沙漠地区公路建设成套技术[M].北京:人民交通出版社,2006:22-38.
[6] 艾力,依斯木吐拉.沙漠环境对公路及其防沙体系的影响及对策研究[J].西安公路交通大学学报,2001,21(2):101-104.
[7] 江兴旺,张婷,王琳,等.沙漠戈壁地区高等级公路风沙防治研究[J].公路,2015(4):251-254.
[8] 李丹,杨光,曲世杰.戈壁地区高速公路路基基底施工技术的研究与实践[J].西南公路,2016(2):191-195.
[9] 韩致文,王涛,董治宝,等.塔克拉玛干沙漠公路沿线风沙活动的时空分布[J].地理科学,2005,25(4):455-460.
[10] 韩致文,王涛,孙庆伟,等.塔克拉玛干沙漠公路风沙危害与防治[J].地理学报,2003,58(2):201-208.
[11] 雷加强,王雪芹,王德.塔里木沙漠公路风沙危害形成研究[J].干旱区研究,2003,20(1):1-6.
[12] 李平,陈三平.风沙地区公路沙害防治方法[J].辽宁交通科技,2002,25(2):8-10.
[13] 王训明,陈广庭.塔里木沙漠公路沿线的起沙风与输沙强度[J].中国沙漠,1997,17(2):168-172.
[14] 尤全刚,薛娴,王涛,等.戈壁地区风沙活动对公路影响的初步研究[J].中国沙漠,2011,31(1):9-15.
[15] 张克存,牛清河,屈建军,等.青藏铁路沱沱河路段流场特征及沙害形成机理[J].干旱区研究,2010,27(2):303-308.
[16] 钱广强,董治宝,罗万银,等.横向沙丘背风侧气流重附风洞模拟[J].中国沙漠,2008,28(1):16-20.
[17] 鱼燕萍,肖建华,屈建军,等.不同坡角公路路基流场的风洞实验[J].中国沙漠,2018,38(3):464-472.
[18] Dong Z B,Luo W Y,Qian G Q,et al.A wind tunnel simulation of the mean velocity fields behind upright porous fences[J].Agricultural & Forest Meteorology,2007,146(1):82-93.
[19] 李建国,屈建军,李芳,等.不同类型防沙堤流场的风洞实验模拟研究[J].中国沙漠,2012,32(2):291-299.
[20] 蔡迪文.青藏铁路格拉段风沙工程体系防护效益研究[D].北京:中国科学院大学,2017.
[21] 尤全刚,薛娴,王涛,等.戈壁地区公路防沙措施防沙效应的风洞试验[J].中国沙漠,2011,31(3):550-557.
[22] 韩致文,刘贤万,姚正义,等.复膜沙袋阻沙体与芦苇高立式方格沙障防沙机理风洞模拟实验[J].中国沙漠,2000,20(1):40-44.
[23] 罗万银,董治宝,钱广强,等.栅栏绕流减速效应风洞实验模拟[J].中国沙漠,2010,30(1):1-7.
[24] 屈建军,刘贤万,雷加强,等.尼龙网栅栏防沙效应的风洞模拟实验[J].中国沙漠,2001,21(3):276-280.
[25] Dong Z B,Chen G T,He X D,et al.Controlling blown sand along the highway crossing the Taklimakan Desert[J].Journal of Arid Environments,2004,57(3):329-344.
[26] Wang T,Qu J J,Ling Y,et al.Wind tunnel test on the effect of metal net fences on sand flux in a Gobi Desert,China[J].Journal of Arid Land,2017,9(6):888-899.
[27] 张炯.拉日铁路风沙防护设施风洞及现场试验研究[J].铁道建筑,2014(9):91-94.
[28] Wang T,Qu J J,Ling Y,et al.Shelter effect efficacy of sand fences:a comparison of systems in a wind tunnel[J].Aeolian Research,2018,30:32-40.
[29] Xiao J H,Yao Z Y,Qu J J.Influence of Golmud-Lhasa section of Qinghai-Tibet Railway on blown sand transport[J].Chinese Geographical Science,2015,25(1):39-50.
[30] 张克存,屈建军,牛清河,等.青藏铁路沿线砾石方格固沙机理风洞模拟研究[J].地球科学进展,2010,25(3):284-289.
[31] 张伟民,谭立海,张克存,等.不同砾石覆盖度床面蚀积过程的野外风洞实验研究[J].地理科学,2012,32(11):1370-1376.
[32] Cornells W M,Gabriels D.Optimal windbreak design for wind-erosion control[J].Journal of Arid Environments,2005,61(2):315-332.
[33] 李锦荣,蒙仲举,高永,等.低立式格状土工沙障固沙效果研究[J].内蒙古农业大学学报(自然科学版),2009,30(1):81-86.
[34] 谭立海,张伟民,安志山,等.砾石覆盖对边界层风速梯度的影响[J].中国沙漠,2012,32(6):1522-1527.
[35] 张克存,倪成君,屈建军,等.风沙防治中覆网床面风沙流特性的风洞模拟[J].干旱区资源与环境,2010,24(2):110-115.
[36] 孙遇祺.铁路公路灾害防治[M].北京:中国铁道出版社,1998:226-227.
Outlines

/