img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Effects of Nitrogen Addition on Photosynthetic Characteristics of Different Canopy Plants in Grassland

  • Xu Chong ,
  • Yu Qiang ,
  • Zuo Xiaoan ,
  • Zhang Chunping ,
  • Niu Decao
Expand
  • 1. State Key Laboratory of Grassland Agro-ecosystems/Key Laboratory of Grassland Livestock Industry of Ministry of Agriculture and Rural/College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China;
    2. Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
    3. Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Received date: 2017-12-08

  Revised date: 2018-01-12

  Online published: 2019-02-14

Abstract

Nitrogen deposition plays an important role in shaping the physiological and ecological characteristics of plants. The photosynthetic characteristics of plants in different canopy may respond differently to nitrogen deposition, however the effects remain unclear. By addition urea in Inner Mongolia grassland, we studied the responses of net photosynthesis rate (Pn), water use efficiency (WUE), transpiration rate (Tr), stomatal conductance (Gs) and biomass of two dominant species (Leymus chinensis represents the upper layer species, Carex korshinskyi, represents the lower layer species) to nitrogen deposition. The results showed that Pn of L. chinensis increased with the increase of nitrogen addition, however decreased when the N addition rate above 1.6 mol·m-2. Pn of C. korshinskyi increased with the increase of nitrogen addition constantly. Nitrogen addition increased the WUE, biomass and relative biomass of L. chinensis, but did not affect the WUE, biomass and relative biomass of C. korshinskyi. The Gs and Tr of C. korshinskyi were significantly higher than those of L. chinensi when the nitrogen addition rate was higher than 0.8 mol·m-2 (P<0.01). Tr of C. korshinskyi increased with the increase of nitrogen addition, however Gs and Tr of L. chinensis showed no clear pattern. Our results indicated that Pn of lower canopy plant increased constantly with the increase of N addition, implying that the upper plant may have no restrictions on the photosynthesis of the lower plant in arid and semi-arid grasslands.

Cite this article

Xu Chong , Yu Qiang , Zuo Xiaoan , Zhang Chunping , Niu Decao . Effects of Nitrogen Addition on Photosynthetic Characteristics of Different Canopy Plants in Grassland[J]. Journal of Desert Research, 2019 , 39(1) : 135 -141 . DOI: 10.7522/j.issn.1000-694X.2018.00005

References

[1] Galloway J N,Dentener F J,Capone D G,et al.Nitrogen cycles:past,present,and future[J].Biogeochemistry,2004,70(2):153-226.
[2] Galloway J N,Townsend A R,Erisman J W,et al.Transformation of the nitrogen cycle:recent trends,questions,and potential solutions[J].Science,2008,320(5878):889-892.
[3] Lu C,Tian H,Liu M,et al.Effect of nitrogen deposition on China's terrestrial carbon uptake in the context of multifactor environmental changes[J].Ecological Applications,2012,22(1):53-75.
[4] Liu X,Duan L,Mo J,et al.Nitrogen deposition and its ecological impact in China:an overview[J].Environmental Pollution,2011,159(10):2251-2264.
[5] Eltrop L,Marschner H.Growth and mineral nutrition of non-mycorrhizal and mycorrhizal Norway spruce (Picea abies) seedlings grown in semi-hydroponic sand culture.1.growth and mineral nutrient uptake in plants supplied with different forms of nitrogen[J].New Phytologist,1996,133(3):469-478.
[6] Daufresne T,Loreau M.Ecological stoichiometry,primary producer-decomposer interactions,and ecosystem persistence[J].Ecology,2001,82(11):3069-3082.
[7] Nijssen M E,Wallisdevries M F,Siepel H.Pathways for the effects of increased nitrogen deposition on fauna[J].Biological Conservation,2017,212(SIB):423-431.
[8] Hautier Y,Niklaus P A,Hector A.Competition for light causes plant biodiversity loss after eutrophication[J].Science,2009,324(5927):636-638.
[9] Lin J,Wang Y,Sun S,et al.Effects of arbuscular mycorrhizal fungi on the growth,photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition[J].Science of the Total Environment,2017,576:234-241.
[10] Swan G A.The nitrogen cycle in nature[J].Nature,1949,164(4176):811.
[11] 刘红梅,李洁,陈新微,等.贝加尔针茅草原羊草光合特征对氮沉降的响应[J].生态环境学报,2016,25(6):973-980.
[12] 韩炳宏,尚振艳,袁晓波,等.氮素添加对黄土高原典型草原长芒草光合特性的影响[J].草业科学,2016,33(6):1070-1076.
[13] 王萌,徐冰,张大勇,等.内蒙古克氏针茅草地主要植物叶片功能性状对氮素添加的响应[J].北京师范大学学报:自然科学版,2016,52(1):32-38.
[14] 罗亚勇,赵学勇,黄迎新,等.植物水分利用效率及其测定方法研究进展[J].中国沙漠,2009,29(4):648-655.
[15] Huang Z,Liu B,Davis M,et al.Long-term nitrogen deposition linked to reduced water use efficiency in forests with low phosphorus availability[J].New Phytologist,2016,210(2):431-442.
[16] 潘庆民,白永飞,韩兴国,等.氮素对内蒙古典型草原羊草种群的影响[J].植物生态学报,2005,29(2):311-317.
[17] Lue C,Tian H.Spatial and temporal patterns of nitrogen deposition in China:synthesis of observational data[J].Journal of Geophysical Research-Atmospheres,2007,112(D22S05D22).
[18] 廖文婷,王瑞辉,钟飞霞,等.5个油茶优良无性系光合及叶片解剖特征比较分析[J].经济林研究,2015,33(1):56-61.
[19] Yu Q,Chen Q,Elser J J,et al.Linking stoichiometric homoeostasis with ecosystem structure,functioning and stability[J].Ecology Letters,2010,13(11):1390-1399.
[20] Long M,Wu H H,Smith M D,et al.Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland[J].Plant & Soil,2016,408(1/2):475-484.
[21] 张云海,何念鹏,张光明,等.氮沉降强度和频率对羊草叶绿素含量的影响[J].生态学报,2013,33(21):6786-6794.
[22] 王斌,黄刚,马健,等.5种荒漠短命植物养分再吸收对氮添加的响应[J].中国沙漠,2016,36(2):415-422.
[23] 孙金伟,吴家兵,任亮,等.氮添加对长白山阔叶红松林2种树木幼苗光合生理生态特征的影响[J].生态学报,2016,36(21):6777-6785.
[24] Warren C R,Dreyer E,Adams M A.Photosynthesis-Rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores[J].Trees,2003,17(4):359-366.
[25] Huang L,Lu Y,Gao X,et al.Ammonium-induced oxidative stress on plant growth and antioxidative response of duckweed (Lemna minor L.)[J].Ecological Engineering,2013,58(13):355-362.
[26] 王强,金则新,彭礼琼.氮沉降对乌药幼苗生理生态特性的影响[J].应用生态学报,2012,23(10):2766-2772.
[27] 林伟宏.植物光合作用对大气CO2浓度升高的反应[J].生态学报,1998,18(5):529-538.
[28] 张永娥,余新晓,陈丽华,等.北京西山侧柏林冠层不同高度处叶片水分利用效率[J].应用生态学报,2017,28(7):2143-2148.
[29] 王庆伟,于大炮,代力民,等.全球气候变化下植物水分利用效率研究进展[J].应用生态学报,2010,21(12):3255-3265.
[30] Welander N T,Ottosson B.The influence of low light,drought and fertilization on transpiration and growth in young seedlings of Quercus robur L[J].Forest Ecology and Management,2000,127(1/2/3):139-151.
[31] Jassal R S,Black T A,Cai T,et al.Impact of nitrogen fertilization on carbon and water balances in a chronosequence of three Douglas-fir stands in the Pacific Northwest[J].Agricultural and Forest Meteorology,2010,150(2):208-218.
[32] 王旭军,徐庆国,杨知建.水稻叶片衰老生理的研究进展[J].中国农学通报,2005,21(3):187-190.
[33] 韩霜,陈发棣.植物对弱光的响应研究进展[J].植物生理学报,2013,49(4):309-316.
[34] 李涛.群体密度对高等植物光合功能的影响及调控机制[D].北京:北京林业大学,2015.
[35] Dickson T L,Foster B L.Fertilization decreases plant biodiversity even when light is not limiting[J].Ecology Letters,2011,14(4):380.
[36] Makino A.Photosynthesis,grain yield,and nitrogen utilization in rice and wheat[J].Plant Physiology,2011,155(1):125-129.
Outlines

/