With the daily precipitation data of Tazhong Station in the hinterland of Taklimakan Desert from 1997 to 2017, the daily variation of precipitation and extremely strong precipitation were analyzed. The results showed that with increasing trend of annual precipitation, the rainy day number was reducing. Especially both the days and volumes of big rainy had obviously increased. The evolvement of rain had enhanced. The rainy days more happened in June, the strongest hourly rain was 8.4 mm which accrued at the end of spring on May 14th. The diurnal variation of precipitation presented many peaks and troughs. The maximum precipitation appeared near midnight at 23:00 (Beijing Time). The maximum precipitation frequency occurred at 06:00 (Beijing Time). The precipitation intensity and frequency played different parts in rain. From afternoon to eve it presented strong precipitation intensity with low precipitation frequency. However, from midnight to day it presented weak precipitation intensity with high precipitation frequency. Short-duration precipitation within 1-3 hours were dominated events in the hinterland of Taklimakan Desert and the contribution rate of short-duration precipitation events within 1-3 hours to total precipitation were up to 61.76%.The threshold of the 99th percentile for daily rainfall and hourly rainfall were 15.3 mm·d-1 and 6.0 mm·h-1, respectively. Actually, contribution rate of extreme strong rainfall higher more than the threshold of the 90th percentile was close to half of total precipitation. The extreme strong rainfall events occurred mainly under the 500 hPa circulation background of the south branch through, trough-line and thin cyclonic wind fields which lied at the south of 40°N in the Southern Xinjiang Basin. And the humidity was close or excess to 10 g·kg-1 at 850 hPa in the Minfeng which was at the southwest of Taklimakan Desert. The continuous character of precipitation was worse, and there were more short term precipitation at mesoscale and micro scale in local.
Zhou Xueying
,
Jia Jian
,
Liu Guoqiang
,
Wang Fang
,
Qiu Huimin
,
Sun Huaiqin
. Characteristics of Precipitation at Hinterland of Taklimakan Desert, China[J]. Journal of Desert Research, 2019
, 39(1)
: 187
-194
.
DOI: 10.7522/j.issn.1000-694X.2018.00022
[1] 周宰根,韩建康,李永能,等.塔克拉玛干沙漠周边地区暖季气温、降水的变化特征及其响应分析[J].石河子大学学报(自然科学版),2008,26(1):55-57.
[2] 徐利岗,周宏飞,李彦,等.中国北方荒漠区降水稳定性与趋势分析[J].水科学进展,2008,19(6):792-799.
[3] 刘永强,何清,张宏升,等.塔克拉玛干沙漠腹地地气相互作用参数研究[J].高原气象,2011,30(5):1294-1299.
[4] 艾力·买买提明,何清,高志球,等.塔克拉玛干沙漠近地层湍流热通量计算方法比较研究[J].中国沙漠,2008,28(5):948-954.
[5] 何清,向鸣,李立.塔克拉玛干沙漠腹地一次强降水天气分析[J].干旱区研究,1998,15(1):16-20.
[6] 何清.塔克拉玛干沙漠塔中大气边界层结构及地-气相互作用观测研究[D].南京:南京信息工程大学,2009.
[7] 何清,杨兴华,艾力·买买提明,等.塔克拉玛干沙漠风蚀起沙观测研究——试验介绍与观测结果初报[J].中国沙漠,2010,30(4):770-776.
[8] 段春锋,缪启龙,曹雯.塔克拉玛干沙漠周边地区潜在蒸散时空演变特征及其主要影响因素[J].中国沙漠,2012,32(6):1723-1730.
[9] 王新萍,杨青.塔克拉玛干沙漠周边地区极端弱降水的时空变化特征[J].中国沙漠,2014,34(5):1376-1385.
[10] 杨青,魏文寿,李军.塔克拉玛干沙漠及周边地区大气水汽量的时空变化[J].科学通报,2008,5(3):62-68.
[11] 黄俊利,魏文寿,杨青,等.塔克拉玛干沙漠南缘极端降水变化趋势与突变特征.[J]沙漠与绿洲气象,2012,6(2):31-34.
[12] 周成龙,杨兴华,霍文,等.塔克拉玛干沙漠腹地降水特征[J].中国沙漠,2017,37(2):344-348.
[13] 王乃昂,马宁,陈红宝,等.巴丹吉林沙漠腹地降水特征的初步分析[J].水科学进展,2013,24(2):154-160.
[14] 杨萍,肖子牛,石文静.基于小时降水资料研究北京地区降水的精细化特征[J].大气科学,2017,41(3):475-489.
[15] 李建,宇如聪,孙溦.中国大陆地区小时极端降水阈值的计算与分析[J].暴雨灾害,2013,32(1):11-16.
[16] 陈春艳,赵克明,阿不力米提江·阿布力克木,等.2015暖湿背景下新疆逐时降水变化特征研究[J].干旱区地理,2015,38(4):693-701.
[17] 陈春艳,王建捷,唐冶,等.新疆夏季降水日变化特征[J].应用气象学报,2017,28(1):72-85.
[18] 宇如聪,李建,陈昊明,等.中国大陆降水日变化研究进展[J].气象学报,2014,72(5):948-968.
[19] 原韦华,宇如聪,傅云飞.中国东部夏季持续性降水日变化在淮河南北的差异分析[J].地球物理学报,2014,57(3):752-759.
[20] 刘树华,刘振鑫,李炬,等.京津冀地区大气局地环流耦合效应的数值模拟[J].中国科学(D辑:地球科学),2009,39(1):88-98.
[21] 赵勇,王前,黄安宁.中亚和南亚热力差异对塔里木盆地夏季降水的影响[J].气候与环境研究,2017,22(5):574-586.
[22] 赵勇,邓学良,李秦,等.天山地区夏季极端降水特征及气候变化[J].冰川冻土,2010,32(5):927-934.