img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

NDVI of Typical Steppe and Desert Steppe in Inner Mongolia in Response to Meteorological Factors

  • Yue Xiyuan ,
  • Zuo Xiaoan ,
  • Chang Xueli ,
  • Xu Chong ,
  • Lv Peng ,
  • Zhang Jing ,
  • Zhao Shenglong ,
  • Cheng Qingping
Expand
  • 1. Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. Shandong Provincial Key Laboratory of Eco, Enviroumontal Science for Yellow River Delta, Binzhou University, Binzhou 256603, Shandong, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. School of Resources and Environmental Engineering, Ludong University, Yantai 264025, Shandong, China;
    5. College of Pastoral Agriculture Science and Technology/State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China;
    6. Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Received date: 2018-04-03

  Revised date: 2018-05-16

  Online published: 2019-06-10

Abstract

The temporal variations of normalized difference vegetation index (NDVI) were analyzed using MODIS NDVI time series data in Inner-Mongolia typical steppe and desert steppe from 2000 to 2016. Effects of drought on NDVI for typical steppe and desert steppe were studied. The NDVI had a relatively small interannual variability, with CV of 0.2 less for both typical steppe and desert steppe. The NDVI models of typical steppe and desert steppe were set up using stepwise regression combined with meteorological data, including annual rainfall, rainfall from May to August, mean annual temperature, mean temperature from May to August, annual aridity index and the aridity index from May to August were used in this study. The results showed that NDVI fluctuated in typical steppe and desert steppe from 2000 to 2016, and the typical steppe and desert steppe had low interannual coefficients of variation of NDVI. Compared to the normal year, drought significantly reduced NDVI by approximately 23% for Leymus chinensis community and Stipa grandis community of typical steppe, respectively. The main factors that affected NDVI for L. chinensis community and S. grandis community of typical steppe were mean precipitation from May to August and aridity index from May to August, respectively. NDVI for the L. chinensis+S. breviflora community and S. plareosa community of desert steppe were mainly affected by mean annual temperature and mean temperature from May to August, respectively. The key factors that affected NDVI were mean precipitation from May to August and mean annual temperature at the regional scale. We assessed the precision of NDVI models, and the high accuracy of NDVI models for typical steppe and desert steppe was observed. Precipitation during the growing season is the key factor that affects NDVI in typical steppe, and temperature significantly impacts on NDVI in desert steppe in Inner Mongolia. The results suggest that NDVI for typical steppe would be more susceptible to drought compared to desert steppe under future climate change scenarios.

Cite this article

Yue Xiyuan , Zuo Xiaoan , Chang Xueli , Xu Chong , Lv Peng , Zhang Jing , Zhao Shenglong , Cheng Qingping . NDVI of Typical Steppe and Desert Steppe in Inner Mongolia in Response to Meteorological Factors[J]. Journal of Desert Research, 2019 , 39(3) : 25 -33 . DOI: 10.7522/j.issn.1000-694X.2018.00053

References

[1] Wang H,Liu G,Li Z,et al.Impacts of climate change on net primary productivity in arid and semiarid regions of China[J].Chinese Geographical Science,2015,26(1):35-47.
[2] Mariotte P,Vandenberghe C,Hagedorn F,et al.Subordinate plant species enhance community insurance to drought in semi-natural grasslands[J].Journal of Ecology,2013,101:763-773.
[3] 王松,耿元波,母悦.典型草原净初级生产力对气候变化响应的模拟[J].草业学报,2016,25(12):4-13.
[4] 马明国,王建,王雪梅.基于遥感的植被年际变化及其与气候关系研究进展[J].遥感学报,2006,10(3):421-431.
[5] Ji L,Peters A J.A spatial regression procedure for evaluating the relationship between AVHRR-NDVI and climate in the northern Great Plains[J].International Journal of Remote Sensing,2004,25(2):297-311.
[6] Gao T,Xu B,Yang X,et al.Using MODIS time series data to estimate aboveground biomass and its spatio-temporal variation in Inner Mongolia's grassland between 2001 and 2011[J].International Journal for Remote Sensing,2013,34(21):7796-7810.
[7] Sun Y,Yang Y,Zhang Y,et al.Assessing vegetation dynamics and their relationships with climatic variability in northern China[J].Physics and Chemistry of the Earth Parts A/B/C,2015,87:79-86.
[8] 蔡学彩,李镇清,陈佐忠,等.内蒙古草原大针茅群落地上生物量与降水量的关系[J].生态学报,2005,25(7):1657-1662.
[9] Ni J.Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China[J].Plant Ecology,2004,174(2):217-234.
[10] Ichii K,Kawabata A,Yamaguchi Y.Global correlation analysis for NDVI and climatic variables and NDVI trends:1982-1990[J].International Journal of Remote Sensing,2002,23(18):3873-3878.
[11] 李素英,刘钟龄,常英,等.内蒙古典型草原初级生产力的补偿性与稳定性[J].干旱区资源与环境,2014,28(1):1-8.
[12] Zhang B,Cao J,Bai Y,et al.Effects of rainfall amount and frequency on vegetation growth in a Tibetan alpine meadow[J].Climatic Change,2013,118(2):197-212.
[13] Fang J,Piao S,Zhou L,et al.Precipitation patterns alter growth of temperate vegetation[J].Geophysical Research Letters,2005,32(21):365-370.
[14] 郭继凯,吴秀芹,董贵华,等.基于MODIS/NDVI的塔里木河流域植被覆盖变化驱动因素相对作用分析[J].干旱区研究,2017,34(3):621-629.
[15] 王涛,李贝贝,裴春营.植被NDVI对城市扩展及气候变化的响应——以西安及其附近区域为例[J].干旱区地理,2017,40(2):388-396.
[16] Kawamura K,Akiyama T,Yokota H,et al.Monitoring of forage conditions with MODIS imagery in the Xilingol steppe,Inner Mongolia[J].International Journal of Remote Sensing,2005,26(7):1423-1436.
[17] 苏大学.1:1000000中国草地资源图的编制与研究[J].自然资源学报,1996,11(1):75-83.
[18] 宋丽弘,唐孝辉.内蒙古草原碳汇经济发展的基础与路径[J].中国草地学报,2012,34(2):1-7.
[19] 王玉辉,周广胜.内蒙古羊草草原植物群落地上初级生产力时间动态对降水变化的响应[J].生态学报,2004,26(6):1140-1145.
[20] 胡中民,樊江文,钟华平,等.中国温带草地地上生产力沿降水梯度的时空变异性[J].中国科学(D辑:地球科学),2006,36(12):1154-1162.
[21] 梁艳,干珠扎布,张伟娜,等.气候变化对中国草原生态系统影响研究综述[J].中国农业科技导报,2014,16(2):1-8.
[22] 陈佐忠.草原生态系统研究:第3集[M].北京:科学出版社,1988:13-21.
[23] Li X,Hou X,Ren W,et al.Long-term effects of mowing on plasticity and allometry of Leymus chinensis in a temperate semi-arid grassland,China[J].Journal of Arid Land,2016,8(6):899-909.
[24] 张瑞强,高天明,张景.围封对希拉穆仁草原植被和土壤种子库的影响[J].中国农业科技导报,2012,14(4):115-120.
[25] 赵学勇,刘良旭,王玮,等.降水波动对荒漠草原生产力的影响[J].中国沙漠,2014,34(6):1486-1495.
[26] Sarlak N,Mahmood Agha O M A.Spatial and temporal variations of aridity indices in Iraq[J].Theoretical and Applied Climatology,2017(3):1-11.
[27] 王海梅,李政海,韩国栋,等.锡林郭勒盟气候干燥度的时空变化规律[J].生态学报,2010,30(23):6538-6545.
[28] 郝虑远,孙睿,谢东辉,等.基于改进N-FINDR算法的华北平原冬小麦面积提取[J].农业工程学报,2013,29(15):153-161.
[29] 丁明军,张镱锂,刘林山,等.1982-2009年青藏高原草地覆盖度时空变化特征[J].自然资源学报,2010,25(12):2114-2122.
[30] 沈斌,房世波,余卫国.NDVI与气候因子关系在不同时间尺度上的结果差异[J].遥感学报,2016,20(3):481-490.
[31] 张宏斌,唐华俊,杨桂霞,等.2000-2008年内蒙古草原MODIS NDVI时空特征变化[J].农业工程学报,2009,25(9):168-175.
[32] Wang Y,Shen Y,Chen Y,et al.Vegetation dynamics and their response to hydroclimatic factors in the Tarim River Basin,China[J].Ecohydrology,2013,6(6):927-936.
[33] 张圣微,张睿,刘廷玺,等.锡林郭勒草原植被覆盖度时空动态与影响因素分析[J].农业机械学报,2017,48(3):253-260.
[34] Gao J X,Chen Y M,Lu S H,et al.A ground spectral model for estimating biomass at the peak of the growing season in Hulunbeier grassland,Inner Mongolia,China[J].International Journal of Remote Sensing,2012,33(13):4029-4043.
[35] 张圣微,赵鸿彬,张发,等.基于MODIS NDVI的锡林郭勒草原近10年的时空动态[J].草业科学,2014,31(8):1416-1423.
[36] 白永飞,陈佐忠.锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响[J].植物生态学报,2000,24(6):641-647.
[37] 谭丽萍,周广胜.内蒙古羊草群落、功能群、物种变化及其与气候的关系[J].生态学报,2013,33(2):650-658.
[38] Jentsch A,Kreyling J,Elmer M,et al.Climate extremes initiate ecosystem-regulating functions while maintaining productivity[J].Journal of Ecology,2011,99(3):689-702.
[39] PeÑUelas J,Prieto P,Beier C,et al.Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought:reductions in primary productivity in the heat and drought year of 2003[J].Global Change Biology,2007,13(12):2563-2581.
[40] 张娜,梁一民.干旱气候对白羊草群落土壤水分和地上部生长的初步观察[J].生态学报,2000,20(6):964-970.
[41] 王云龙,许振柱,周广胜.水分胁迫对羊草光合产物分配及其气体交换特征的影响[J].植物生态学报,2004,28(6):803-809.
[42] 张清雨,吴绍洪,赵东升,等.内蒙古草地生长季植被变化对气候因子的响应[J].自然资源学报,2013,28(5):754-764.
[43] 郭群,李胜功,胡中民,等.内蒙古温带草原典型草地生态系统生产力对水分在不同时间尺度上的响应[J].中国沙漠,2015,35(3):616-623.
[44] 穆少杰,李建龙,周伟,等.2001-2010年内蒙古植被净初级生产力的时空格局及其与气候的关系[J].生态学报,2013,33(12):3752-3764.
[45] 宋超,余琦殷,邢韶华,等.近三十余年河北大海陀自然保护区山地草甸植被(NDVI)变化及其对气候的响应[J].生态学报,2018,38(7):1-9.
[46] 张仁平,冯琦胜,郭靖,等.2000-2012年中国北方草地NDVI和气候因子时空变化[J].中国沙漠,2015,35(5):1403-1412.
[47] Wang J,Rich P M,Price K P.Temporal responses of NDVI to precipitation and temperature in the central Great Plains,USA[J].International Journal of Remote Sensing,2003,24(11):2345-2364.
[48] Copeland S M,Harrison S P,Latimer A M,et al.Ecological effects of extreme drought on Californian herbaceous plant communities[J].Ecological Monographs,2016,86(3):295-311.
[49] Miao L,Jiang C,Xue B,et al.Vegetation dynamics and factor analysis in arid and semi-arid Inner Mongolia[J].Environmental Earth Sciences,2015,73(5):2343-2352.
[50] 朱雅娟,吴波,卢琦.干旱区对降水变化响应的研究进展[J].林业科学研究,2012,25(1):100-106.
[51] 周梦甜,李军,朱康文.近15 a新疆不同类型植被NDVI时空动态变化及对气候变化的响应[J].干旱区地理,2015,38(4):779-787.
Outlines

/