img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

The Turbulence Intensity of Surface Layer and Land Surface Processes over Guaizi Lake Shifting Sandy Land on the Northern Margin of Badain Jaran Desert

  • Zheng Xinqian ,
  • Yang Fan ,
  • Li Chaofan ,
  • Pan Honglin ,
  • Ji Chunrong ,
  • Ali Mamtimin ,
  • Huo Wen ,
  • Yang Xinghua ,
  • Zhou Chenglong
Expand
  • 1. Xinjiang Agro-Meteorolical Observatory, Urumqi 830002, China;
    2. Taklimakan Desert Meteorology Field Experiment Station of CMA, Institute ofDesert Meteorology, China Meteorological Administration, Urumqi 830002, China;
    3. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China;
    4. School of Geographic Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China

Received date: 2018-06-13

  Revised date: 2018-08-17

  Online published: 2019-07-12

Abstract

In this paper, we analyzed the turbulent intensity, the relationship between normalized standard deviations of wind velocity components, temperature, water vapor, CO2 and stability parameters z/L and bulk transfer coefficients in the atmospheric surface layer over Guaizi Lake shifting sandy land based on land-atmosphere turbulent flux data in July, October 2013 and January and April 2014. The results indicated that the turbulent intensity of wind velocity components decreased with the increase of wind velocity. The development of turbulence was much vigorous, when the average wind velocity was below 2 m·s-1. The near-neutral and unstable atmospheric stratification condition were favorable to the development of turbulence. Also, the horizontal components of wind velocity were main factor that could impact turbulent intensity, and the influence of vertical wind velocity was relatively weak. Compared with other underlying surface, because of the desert was relatively flat, the mechanical turbulence of desert was weak. So the turbulent intensity of desert also was small. Further, we also found the normalized standard deviations of wind velocity components presented the less regularity and the obvious fluctuation was found at sunrise and sunset during diurnal variation. Bulk transfer coefficients decrease with increasing wind speeds under unstable atmospheric condition, and increase with increasing wind speeds under stable atmospheric condition.

Cite this article

Zheng Xinqian , Yang Fan , Li Chaofan , Pan Honglin , Ji Chunrong , Ali Mamtimin , Huo Wen , Yang Xinghua , Zhou Chenglong . The Turbulence Intensity of Surface Layer and Land Surface Processes over Guaizi Lake Shifting Sandy Land on the Northern Margin of Badain Jaran Desert[J]. Journal of Desert Research, 2019 , 39(4) : 103 -112 . DOI: 10.7522/j.issn.1000-694X.2018.00090

References

[1] 魏伟,张宏升.希尔伯特-黄变换技术及在边界层湍流研究中的应用[J].气象学报,2013,71(6):1183-1193.
[2] 刘树华,李洁,刘和平,等.在EBEX-2000实验资料中湍流谱和局地各向同性特征[J].大气科学,2005,29(2):213-224.
[3] 李富余,张宏升,李诗明,等.青藏高原当雄地区湍流脉动耗散率特征研究[J].北京大学学报(自然科学版),2004,40(5):781-787.
[4] 倪攀,金昌杰,王安志,等.科尔沁草地不同大气稳定度下湍流特征谱分析[J].生态学杂志,2009,28(12):2495-2502.
[5] Dyer A J,Garratt J R,Francey R J,et al.An international turbulence comparison experiment (ITCE 1976)[J].Boundary-Layer Meteorology,1982,24(2):181-209.
[6] 张宏昇.大气湍流基础[M].北京:北京大学出版社,2014.
[7] Kolmogorov A N.The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[J].Proceedings of the Royal Society of London,1968,434(1890):9-13.
[8] Monin A S,Obukhov A M.Basic Laws of Turbulent Mixing in the Atmosphere near the Ground[R].Trudy Geofizicheskogo Instituta, Akademiya Nauk SSSR,1959:1963-1987.
[9] Haugen D A,Kaimal J C,Bradley E F.An experimental study of Reynolds stress and heat flux in the atmospheric surface layer[J].Quarterly Journal of the Royal Meteorological Society,2010,97(412):168-180.
[10] 刘晓虎,王介民.戈壁地区湍流能量耗散率和温度脉动耗散率[J].高原气象,1992,11(4):344-352.
[11] 徐敏,蒋维楣,胡非,等.湍流湿度脉动特性研究——根据淮河流域实验资料[J].地球物理学报,2002,45(1):17-25.
[12] 张强,黄荣辉,王胜,等.西北干旱区陆-气相互作用试验(NWC-ALIEX)及其研究进展[J].地球科学进展,2005,20(4):427-441.
[13] 岳平,牛生杰,胡隐樵,等.春季内蒙古草原地区湍流强度及其相似性函数[J].中国科学(地球科学),2010,40(8):1087-1094.
[14] 岳平,张强,牛生杰,等.春季内蒙古草原典型晴天与沙尘条件下湍流速度统计特征对比分析[J].高原气象,2011,30(5):1180-1188.
[15] 奥银焕,吕世华,韩博,等.巴丹吉林沙漠夏季近地层微气象特征分析[J].高原气象,2013,32(6):1682-1691.
[16] 缪启龙,温雅婷,何清,等.沙漠腹地春夏季近地层大气湍流特征观测分析[J].中国沙漠,2010,30(1):167-174.
[17] 温雅婷.塔克拉玛干沙漠腹地近地层湍流特征的观测研究[D].南京:南京信息工程大学,2008.
[18] 胡文峰,何清,杨兴华,等.一次沙尘暴过程中的沙地面微气象要素及起沙参数分析[J].干旱区资源与环境,2012,26(5):73-78.
[19] 杨帆,郑新倩,努尔阿米娜·依明,等.巴丹吉林沙漠北缘沙尘天气过程中近地面气象要素变化及风沙流结构分析[J].沙漠与绿洲气象,2015(4):67-74.
[20] Zhou D G,Huang R H.Characterization of turbulent flux transfer over a gobi surface with quality-controlled observations[J].Science China Earth Sciences,2011,54(5):753-763.
[21] 温雅婷,缪启龙,何清,等.塔中近地层春夏季湍强和湍能变化的观测研究[J].中国沙漠,2010,30(2):439-444.
[22] Edgar L A,Reginald J H,James R G,et al.Statistics of surface-layer turbulence over terrain with metre-scale heterogeneity[J].Boundary-Layer Meteorology,1998,86(3):379-408.
[23] 马耀明,马伟强,胡泽勇,等.青藏高原草甸下垫面湍流强度相似性关系分析[J].高原气象,2002,21(5):514-517.
[24] 尚伦宇,吕世华,张宇,等.青藏高原东部土壤冻融过程中近地层湍流统计特征分析[J].高原气象,2011,30(1):30-37.
[25] 张宏升,李富余,陈家宜.不同下垫面湍流统计特征研究[J].高原气象,2004,23(5):598-604.
[26] 陈云刚,张宇,王少影,等.高寒草甸湍流特征量的季节变化特征[J].高原气象,2014,33(3):585-595.
[27] 刘辉志,洪钟祥.青藏高原改则地区近地层湍流特征[J].大气科学,2000,24(3):289-300.
[28] 卞林根,陆龙骅,程彦杰,等.青藏高原东南部昌都地区近地层湍流输送的观测研究[J].应用气象学报,2001,12(1):1-13.
[29] 吴灏,叶柏生,吴锦奎,等.疏勒河上游高寒草甸下垫面湍流特征分析[J].高原气象,2013,32(2):368.
[30] Mahrt L.Nocturnal boundary-layer regimes[J].Boundary-Layer Meteorology,1998,88(2):255-278.
[31] 苏红兵,洪钟祥.北京城郊近地层湍流实验观测[J].大气科学,1994,18(6):739-750.
[32] 徐玉貌,周朝辅,李振华,等.广州市近地层大气的湍流微结构和谱特征[J].大气科学,1993,17(3):338-348.
[33] 陈铭夏,李宗恺,王庆安.南京市近地层湍流结构及输送特征研究[J].气象科学,2000,20(2):111-119.
[34] 张强,卫国安,黄荣辉.西北干旱区荒漠戈壁动量和感热总体输送系数[J].中国科学(地球科学),2001,31(9):783-792.
[35] 张强,卫国安.荒漠戈壁大气总体曳力系数和输送系数观测研究[J].高原气象,2004,23(3):305-312.
[36] 岳平,张强,李耀辉,等.半干旱草原下垫面动量和感热总体输送系数参数化关系研究[J].物理学报,2013,62(9):519-527.
[37] 杨兴国,马鹏里,王润元,等.陇中黄土高原夏季地表辐射特征分析[J].中国沙漠,2005,25(1):55-62.
[38] 岳平,张强,牛生杰,等.草原下垫面湍流动量和感热相似性函数及总体输送系数的特征[J].物理学报,2012,61(21):548-559.
Outlines

/