The two dust events affecting Beijing on 4-5, May, 2017 and 28-30, March, 2015 included both long range transport and dust backflow. The variation of meteorological elements, transmission trajectories, weather conditions and boundary layer characteristics of the two events were analyzed by using conventional meteorological observation data, atmospheric composition data, CALIPSO satellite monitoring and wind profile radar data. It was found that both events were caused by Mongolian cyclone. The dust aerosol transported through sand source during long range transport can be raised to a height above 700 hPa, and the main transport layer was located in the middle and lower troposphere. High-altitude jet stream intensity, inlet zone location and the structure of the secondary circulation showed important indications for the dust transport. The dust backflow was mainly affected by the low-level southerly wind belt, and boundary layer below 1 km was the main transport layer. The time lag of PM10 concentration variation between Beijing and upstream cities was determined by whether the dust weather had been completely removed previously.
Hua Cong
,
Liu Chao
,
Zhang Bihui
. Comparative Analysis of Transport Characteristics of Two Dust Events Affecting Beijing[J]. Journal of Desert Research, 2019
, 39(6)
: 99
-107
.
DOI: 10.7522/j.issn.1000-694X.2018.00144
[1] Penner J E,Hegg D,Leaitch R.Unraveling the role of aerosols in climate change[J].Environmental Science and Technology,2001,35:332-340.
[2] Fu X,Wang S X,Cheng Z,et al.Source,transport and impacts of a heavy dust event in the Yangtze River Delta,China,in 2011[J].Atmospheric Chemistry & Physics,2014,14:1239-1254.
[3] 陈思宇,黄建平,李景鑫,等.塔克拉玛干沙漠和戈壁沙尘起沙、传输和沉降的对比研究[J].中国科学,2017,47(8):939-957.
[4] 姜学恭,李夏子,王德军.一次典型蒙古气旋沙尘暴的对流层顶演变及沙尘垂直输送特征[J].干旱气象,2018,36(1):1-10.
[5] Marinou E,Amiridis V,Binietoglou I,et al.Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset[J]. Atmospheric Chemistry & Physics,2017,17:5893-5919.
[6] 白冰,张强,吕巧谊,等.一次区域沙尘过程的垂直结构和传输路径分析[J].干旱区资源与环境,2016,30(9):128-133.
[7] 徐成鹏,葛觐铭,黄建平,等.基于CALIPSO星载激光雷达的中国沙尘气溶胶观测[J].中国沙漠,2014,34(5):1353-1362.
[8] 柳丹,张武,陈艳,等.基于卫星遥感的中国西北地区沙尘天气发生机理及传输路径分析[J].中国沙漠,2017,34(6):1605-1616.
[9] 王敏仲,魏文寿,何清,等.边界层风廓线雷达资料在沙尘天气分析中的应用[J].中国沙漠,2011,31(2):352-356.
[10] 魏文寿,王敏仲,何清,等.基于风廓线雷达技术的沙尘天气监测研究[J].中国工程科学,2012,14(10):51-64.
[11] 刘超,张碧辉,花丛,等.风廓线雷达在北京地区一次强沙尘天气分析中的应用[J].中国环境科学,2018,38(5):1663-1669.
[12] 安林昌,张恒德,桂海林,等,2015年春季华北黄淮等地一次沙尘天气过程分析[J].气象,2018,44(1):180-188.
[13] 张亚妮,张碧辉,宗志平,等.影响北京的一例沙尘天气过程的起沙沉降及输送路径分析[J].气象,2013,39(7):911-922.
[14] 徐文帅,李云婷,孙瑞雯,等.典型沙尘回流天气过程对北京市空气质量影响的特征分析[J].环境科学学报,2014,34(2):297-302.
[15] 邓梅,张佳华,蒋跃林.沙尘暴影响下北京沙尘气溶胶的垂直分布及溯源分析[J].气象科学,2015,35(5):550-557.
[16] 何平.相控阵风廓线雷达[M].北京:气象出版社,2006:2-50.
[17] 熊亚军,唐宜西,寇星霞,等.北京春季一次霾和沙尘混合污染天气过程分析[J].干旱气象,2017,35(1):100-107.
[18] 杨先荣,王劲松,张锦泉,等.高空急流带对甘肃沙尘暴强度的影响[J].中国沙漠,2011,31(4):1046-1051.
[19] 段海霞,李耀辉,蒲朝霞,等.高空急流对一次强沙尘暴过程沙尘传输的影响[J].中国沙漠,2013,33(5):1461-1472.
[20] 孟雪峰,孙永刚,仲夏,等.2015年2月21日内蒙古风雪沙尘天气特征[J].中国沙漠,2016,36(1):239-246.
[21] 袁国波.21世纪以来内蒙古沙尘暴特征及成因[J].中国沙漠,2017,37(6):1204-1209.
[22] 朱乾根,林锦瑞,寿绍文,等.天气学原理和方法[M].北京:气象出版社,2000:193.