Review and prospect of the researches on C4 woody plants and soil inorganic carbon sequestration in deserts of China
Received date: 2021-07-07
Revised date: 2021-07-27
Online published: 2022-01-28
Carbon is one of the primary elements, and the carbon cycle is an important link between nature and social systems. There are two pathways of natural carbon sequestration in terrestrial ecosystems, one is plant carbon assimilation, the other is soil carbon assimilation. People always pay attention to the plants organic carbon sequestration, and little attention on the soil inorganic carbon sequestration. In this paper, we reviewed the research progress on C4 woody plants which have strong carbon sequestration ability, and soil inorganic carbon sequestration in desert region of China. Comprehensive analysis of the anatomical structure observation, δ13C values and gas exchange characteristics, it was concluded that the desert plants Haloxylon ammodendron and Calligonum mongolicum are typical C4 woody plants. The assimilation shoots of H. ammodendron has a large number of crystal-containing cells, while the assimilation shoots of C. mongolicum has many mucilage cells. The inorganic carbon sequestration capacity of deserts in an arid region has not been for a properly explained. By analyzing the soil inorganic carbon density and their storage in gravel desert (gobi), sand desert, and silt desert, Su Peixi et al. proposed the concept of soil carbon assimilation for the first time in 2018, and three stages of soil carbon assimilation were given to explain the phenomenon of soil inorganic carbon sequestration. Compared with the plant carbon assimilation, soil carbon assimilation is the major pathway of carbon sequestration in desert. Finally, we prospected the research direction of desert C4 woody plants and soil carbon assimilation, and discussed the possible contributions to China's carbon neutral goal before 2060.
Peixi Su . Review and prospect of the researches on C4 woody plants and soil inorganic carbon sequestration in deserts of China[J]. Journal of Desert Research, 2022 , 42(1) : 23 -33 . DOI: 10.7522/j.issn.1000-694X.2021.00184
1 | Su P X,Xie T T,Zhou Z J.C4 plant species and geographical distribution in relation to climate in the desert vegetation of China[J].Sciences in Cold and Arid Regions,2011,3(5):381-391. |
2 | Su P X,Liu X M,Zhang L X,et al.Comparison of δ13C values and gas exchange of assimilating shoots of desert plants Haloxylon ammodendron and Calligonum mongolicum with other plants[J].Israel Journal of Plant Sciences,2004,52:87-97. |
3 | 温瑾,李振声.从不毛地到米粮川:共和国农业史上的“黄淮海战役”[M].长沙:湖南教育出版社,2014. |
4 | 苏培玺,安黎哲,马瑞君,等.荒漠植物梭梭和沙拐枣的花环结构及C4光合特征[J].植物生态学报,2005,29(1):1-7. |
5 | 潘瑞炽.植物生理学[M].北京:高等教育出版社,2016. |
6 | Winter K.C4 plant of high biomass in arid regions of Asia-occurrence of C4 photosynthesis in Chenopodiaceae and Polygonaceae from the Middle East and USSR[J].Oecologia,1981,48:100-106. |
7 | Gamaley Y V,Shirevdamba T.The structure of plants of Trans-Altai Gobi[M]//Gamaley Y V.Deserts of Trans-Altai Gobi.Characteristics of Dominant Plants.Leningrad:Nauka,1988:44-106. |
8 | Pearcy R W,Troughton J.C4 photosynthesis in tree form Euphorbia species from Hawaiian rainforest sites[J].Plant Physiology,1975,55:1054-1056. |
9 | 苏培玺.C4植物生物学:荒漠植物生理生态适应性[M].北京:科学出版社,2019. |
10 | 李美荣.C4光合作用植物名录[J].植物生理学通讯,1993,29(2):148-159. |
11 | 殷立娟,李美荣.中国C4植物的地理分布与生态学研究:I.中国C4植物及其与气候环境的关系[J].生态学报,1997,17(4):350-363. |
12 | 唐海萍,刘书润.内蒙古地区的C4植物名录[J].内蒙古大学学报(自然科学版),2001,32(4):431-438. |
13 | 公维昌,庄丽,赵文勤,等.多枝柽柳与梭梭光合器官形态解剖结构的生态适应性[J].中国沙漠,2011,31(1):129-136. |
14 | Lyshede O B.Xeromorphic features of three stem assimilating in relation to their ecology[J].Botanical Journal of the Linnean Society,1979,78:85-98. |
15 | 李正理,李荣敖.我国甘肃九种旱生植物同化枝的解剖观察[J].植物学报,1981,23(3):181-185. |
16 | 赵翠仙,黄子琛.腾格里沙漠主要旱生植物旱性结构的初步研究[J].植物学报,1981,23(4):283-286. |
17 | 刘家琼.我国荒漠不同生态类型植物的旱生结构[J].植物生态学与植物学丛刊,1982,6(4):314-319. |
18 | 罗秀英,邓彦斌.新疆几种旱生植物叶(同化枝)的解剖结构观察[J].新疆大学学报(自然版),1986(1):77-84. |
19 | 黄振英,吴鸿,胡正海.30种新疆沙生植物的结构及其对沙漠环境的适应[J].植物生态学报,1997,21(6):521-530. |
20 | 侯彩霞,周培之.水分胁迫下超旱生植物梭梭的结构变化[J].干旱区研究,1997,14(4):23-25. |
21 | Voznesenskaya E V,Franceschi V R,Kiirats O,et al.Kranz anatomy is not essential for terrestrial C4 plant photosynthesis[J].Nature,2001,414:543-546. |
22 | Leegood R C,Sharkey T D,von Caemmerer S.Photosynthesis:Physiology and Metabolism[M].Netherlands:Kluwer Academic,2000. |
23 | 严巧娣,苏培玺.植物含晶细胞的结构与功能[J].植物生理学通讯,2006,42(4):761-766. |
24 | 严巧娣,苏培玺,陈宏彬,等.五种C4荒漠植物光合器官中含晶细胞的比较分析[J].植物生态学报,2008,32(4):873-882. |
25 | Volk G M,Lynch-Holm V J,Kostman T A,et al.The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia Stratiotes leaves[J].Plant Biology,2002,4(1):34-45. |
26 | Wyssling A F.Crystallography of the two hydrates of crystalline calcium oxalate in plants[J].American Journal of Botany,1981,68:130-141. |
27 | Ehleringer J R,Cerling T E,Helliker B R.C4 photosynthesis,atmospheric CO2,and climate[J].Oecologia,1997,112(3):285-299. |
28 | Pyankov V I,Black C C,Artyusheva E G,et al.Features of photosynthesis in Haloxylon species of Chenopodiaceae that are dominant plants in central Asian deserts[J].Plant and Cell Physiology,1999,40(2):125-134. |
29 | 高松,苏培玺,严巧娣.等.C4荒漠植物猪毛菜与木本猪毛菜的叶片解剖结构及光合生理特征[J].植物生态学报,2009,33(2):347-354. |
30 | Su P X,Cheng G D,Yan Q D,et al.Photosynthetic regulation of C4 desert plants Haloxylon ammodendron under drought stress[J].Plant Growth Regulation,2007,51:139-147. |
31 | Gao S,Su P X,Yan Q D,et al.Canopy and leaf gas exchange of Haloxylon ammodendron under different soil moisture regimes[J].Science China:Life Sciences,2010,53(6):718-728. |
32 | Su P X,Li S J,Zhou Z J,et al.Partitioning evapotranspiration of desert plants under different water regimes in the inland Heihe River Basin,Northwestern China[J].Arid Land Research and Management,2016,30(2):138-152. |
33 | 朱丽,黄刚,唐立松,等.梭梭根系的水分再分配特征对其生理和形态的影响[J].干旱区研究,2017,34(3):638-647. |
34 | 卢福浩,沙衣班·吾布力,刘深思,等.根深决定不同个体大小梭梭对夏季干旱生理响应的差异[J].生态学报,2021,41(8):3178-3189. |
35 | Su P X,Chen H S,An L Z,et al.Carbon assimilation characteristics of plants in oasis-desert ecotone and their response to CO2 enrichment[J].Science in China Ser.D Earth Sciences,2004,47(S1):39-49. |
36 | 柏新富,朱建军,赵爱芬,等.几种荒漠植物对干旱过程的生理适应性比较[J].应用与环境生物学报,2008,14(6):763-768. |
37 | 解婷婷,苏培玺,周紫鹃,等.荒漠绿洲过渡带沙拐枣种群结构及动态特征[J].生态学报,2014,34(15):4272-4279. |
38 | Su P X,Yan Q D,Xie T T,et al.Associated growth of C3 and C4 desert plants helps the C3 species at the cost of the C4 species[J].Acta Physiologiae Plantarum,2012,34(6):2057-2068. |
39 | 严巧娣,苏培玺,高松.干旱程度对C3植物红砂和C4植物珍珠光合生理参数的影响[J].中国沙漠,2012,32(2):364-371. |
40 | 苏培玺,王秀君,解婷婷,等.干旱区荒漠无机固碳能力及土壤碳同化途径[J].科学通报,2018,63(8):755-765. |
41 | Tan W F,Zhang R,Cao H,et al.Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China[J].Catena,2014,121:22-30. |
42 | Wang X J,Wang J P,Xu M G,et al.Carbon accumulation in arid croplands of northwest China:pedogenic carbonate exceeding organic carbon[J].Scientific Reports,2015,5:11439. |
43 | 李彦,王玉刚,唐立松.重新被“激活”的土壤无机碳研究[J].土壤学报,2016,53(4):845-849. |
44 | Hastings S J,Oechel W C,Muhlia-Melo A.Diurnal,seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California,Mexico[J].Global Change Biology,2005,11:927-939. |
45 | Wohlfahrt G,Fenstermaker L F,Arnone J A.Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem[J].Global Change Biology,2008,14:1475-1487. |
46 | Xie J X,Li Y,Zhai C X,et al.CO2 absorption by alkaline soils and its implication to the global carbon cycle[J].Environmental Geology,2009,56(5):953-961. |
47 | Hamerlynck E P,Scott R L,Sánchez-Ca?ete E P,et al.Nocturnal soil CO2 uptake and its relationship to subsurface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland[J].Journal of Geophysical Research:Biogeosciences,2013,118:1593-1603. |
48 | Liu J,Fa K,Zhang Y,et al.Abiotic CO2 uptake from the atmosphere by semiarid desert soil and its partitioning into soil phases[J].Geophysical Research Letters,2015,42(14):5779-5785. |
49 | Rey A.Mind the gap:non-biological processes contributing to soil CO2 efflux[J].Global Change Biology,2015,21:1752-1761. |
50 | Shanhun F L,Almond P C,Clough T J,et al.Abiotic processes dominate CO2 fluxes in Antarctic soils[J].Soil Biology & Biochemistry,2012,53:99-111. |
51 | Stone R.Have desert researchers discovered a hidden loop in the carbon cycle?[J].Science,2008,320:1409-1410. |
52 | IPCC.Climate Change 1994:Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios[M].Cambridge,UK:Cambridge University Press,1994. |
53 | 姜联合.干旱区盐碱土的秘密:碳黑洞释义[J].生物学通报,2014,49(3):1-3. |
54 | Liu Z,Shao M,Wang Y.Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region,China[J].Agriculture,Ecosystems and Environment,2011,142:184-194. |
55 | Li Z P,Han F X,Su Y,et al.Assessment of soil organic and carbonate carbon storage in China[J].Geoderma,2007,138:119-126. |
56 | Mi N,Wang S Q,Liu J Y,et al.Soil inorganic carbon storage pattern in China[J].Global Change Biology,2008,14:2380-2387. |
57 | Schlesinger W H.An evaluation of abiotic carbon sinks in deserts[J].Global Change Biology,2017,23:25-27. |
58 | Li Y,Wang Y G,Houghton R A,et al.Hidden carbon sink beneath desert[J].Geophysical Research Letters,2015,42(14):5880-5887. |
59 | Carmi I,Kronfeld J,Moinester M.Sequestration of atmospheric carbon dioxide as inorganic carbon in the unsaturated zone under semi-arid forests[J].Catena,2019,173:93-98. |
60 | Laudicina V A,Dazzi C,Delgado A,et al.Relief and calcium from gypsum as key factors for net inorganic carbon accumulation in soils of a semiarid Mediterranean environment[J].Geoderma,2021,398:115115. |
61 | Sagi N,Zaguri M,Hawlena D.Soil CO2 influx in drylands:a conceptual framework and empirical examination[J].Soil Biology and Biochemistry,2021,156:108209. |
62 | Wang X J,Xu M G,Wang J P,et al.Pertilization enhancing carbon sequestration as carbonate in arid cropland:assessments of long-term experiments in northern China[J].Plant and Soil,2014,380:89-100. |
63 | Lal R.Carbon sequestration in dryland ecosystems[J].Environmental Management,2004,33:528-544. |
64 | Shi H J,Wang X J,Zhao Y J,et al.Relationship between soil inorganic carbon and organic carbon in the wheat-maize cropland of the North China Plain[J].Plant and Soil,2017,418:423-436. |
65 | Liu Z,Sun Y,Zhang Y,et al.Soil microbes transform inorganic carbon into organic carbon by dark fixation pathways in desert soil[J].Journal of Geophysical Research:Biogeosciences,2021,126(5):e2020JG006047. |
66 | Delgado-Baquerizo M,Maestre F T,Gallardo A,et al.Decoupling of soil nutrient cycles as a function of aridity in global drylands[J].Nature,2013,502:672-676. |
67 | Eamus D,Zolfaghar S,Villalobos-Vega R,et al.Groundwater-dependent ecosystems:recent insights from satellite and field-based studies[J].Hydrology and Earth System Sciences,2015,19:4229-4256. |
68 | 施雅风.中国西北气候由暖干向暖湿转型问题评估[M].北京:气象出版社,2003. |
/
〈 |
|
〉 |