img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Soil microbial diversity and its relationship with soil physicochemical properties in Urat natural Haloxylon ammodendron forest

  • Feng Chen ,
  • Jing Zhang ,
  • Erniu Han ,
  • Wensuyalatu ,
  • Shenglin Li ,
  • Guolin Wang ,
  • Lei Wang ,
  • Shaokun Wang
Expand
  • 1.Bureau of Urat National Nature Reserve in Bayan Nur City,Bayan Nur 015000,Inner Mongolia,China
    2.Master Station of Forestry and Grassland Protection in Inner Mongolia,Hohhot 010020,China
    3.Urat Rear Banner Station of Urat Haloxylon ammodendron and Equus hemionus National Nature Reserve,Bayan Nur 015000,Inner Mongolia,China
    4.Bayan Nur Wulashan Forestry Management and Protection Center,Bayan Nur 015000,Inner Mongolia,China
    5.Urat Desert-grassland Research Station,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China

Received date: 2021-08-16

  Revised date: 2021-10-19

  Online published: 2022-03-30

Abstract

Haloxylon ammodendron is a widely used plant species for sand stabilization. It plays an important role in arid land development ecologically and economically. We chose natural H. ammodendron forest (Ha) to measure the soil microbial diversity and soil physicochemical properties, and analyze their relationships in Urat Rear Banner of Inner Mongolia. Bare sand (BS) was set as control. The results showed that both the soil bacterial and fungal diversities, including Shannon diversity index, Chao1 richness index and Phylogenetic diversity index were significantly higher in Ha than those in BS. Soil total carbon and nitrogen content were 1.73 and 2.21 times higher in Ha than those in BS. Soil silt and clay content was 2.6 times higher in Ha than that in BS. Soil water content was significantly lower in Ha than that in BS. H. ammodendron improved soil nutrients and soil texture, and consequently impact on soil microbial diversity. Soil bacterial and fungal diversities were positively correlated with soil total carbon and nitrogen contents, pH and electrical conductivity, while negatively correlated with soil C∶N, soil water content and fine sand content. Structural equation models (SEM) revealed that vegetation and soil pH directly influenced soil bacterial diversity. Soil fungal diversity was directly influenced by soil total carbon and soil water content, and indirectly influenced by vegetation.

Cite this article

Feng Chen , Jing Zhang , Erniu Han , Wensuyalatu , Shenglin Li , Guolin Wang , Lei Wang , Shaokun Wang . Soil microbial diversity and its relationship with soil physicochemical properties in Urat natural Haloxylon ammodendron forest[J]. Journal of Desert Research, 2022 , 42(2) : 207 -214 . DOI: 10.7522/j.issn.1000-694X.2021.00131

References

1 徐高兴,徐先英,王立,等.梭梭不同密度与配置固沙效果风洞模拟试验[J].干旱区资源与环境,2019,33(9):189-195.
2 宋朝枢,贾昆峰.乌拉特梭梭林自然保护区科学考察集[M].北京:中国林业出版社,2000.
3 张斌,隋罡,黄忠胜.乌拉特后旗着力保护梭梭林和肉苁蓉资源[J].内蒙古林业,2012(5):34.
4 谷占强,马玲,武剑宏,等.乌拉特后旗肉苁蓉产业发展方兴未艾[J].内蒙古林业,2018(10):26.
5 马克平,钱迎倩.生物多样性保护及其研究进展[J].应用与环境生物学报,1998(1):96-100.
6 赵生龙,左小安,张铜会,等.乌拉特荒漠草原群落物种多样性和生物量关系对放牧强度的响应[J].干旱区研究,2020,37(1):168-177.
7 吴建国,周巧富,李艳.中国生物多样性保护适应气候变化的对策[J].中国人口·资源与环境,2011,21(增1):435-439.
8 赵哈林.人类活动和气候变化对科尔沁沙质草地植物多样性的影响[C]//中国草学会牧草育种专业委员会学术研讨会论文集,2007.
9 沈芳芳,刘影,罗昌泰,等.陆地生态系统植物和土壤微生物群落多样性对全球变化的响应与适应研究进展[J].生态环境学报,2019,28(10):2129-2140.
10 郭子良,邢韶华,崔国发.自然保护区物种多样性保护价值评价方法[J].生物多样性,2017,25(3):312-324.
11 Romaniuk R, Giuffré L, Costantini A,et al.Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems[J].Ecological Indicators,2011,11(5):1345-1353.
12 周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性,2007,15(3):306-311.
13 马琳.土壤微生物多样性影响因素及研究方法综述[J].乡村科技,2019,(33):112-113.
14 赵轻舟,王艳芬,崔骁勇,等.草地土壤微生物多样性影响因素研究进展[J].生态科学,2018,37(3):204-212.
15 刘怡萱,曹鹏熙,马红梅,等.青藏高原土壤微生物多样性及其影响因素研究进展[J].环境生态学,2019,1(6):1-7.
16 张珂,苏永中,王婷,等.荒漠绿洲区不同种植年限人工梭梭林土壤化学计量特征[J].生态学报,2016,36(11):3235-3243.
17 刘江,张立欣,徐先英.不同退化程度的人工梭梭林地土壤理化特征[J].西北林学院学报,2019,34(4):36-42.
18 罗青红,宁虎森,陈启民.人工梭梭(Haloxylon ammodendron)林固沙过程中植被与土壤耦合关系[J].中国沙漠,2018,38(4):780-790.
19 苏永中,刘婷娜.流动沙地建植人工固沙梭梭林的土壤演变过程[J].土壤学报,2020,57(1):84-91.
20 席军强,杨自辉,郭树江,等.人工梭梭林对沙地土壤理化性质和微生物的影响[J].草业学报,2015,24(5):44-52.
21 厉静文,包岩峰,郭浩,等.梭梭(Haloxylon anmodendron)林带防风效果的风洞试验[J].中国沙漠,2020,40(3):77-84.
22 郭向东,王树森,罗于洋,等.干扰程度对巴音温都尔沙漠天然梭梭林表层土壤粒径特征影响的研究[J].内蒙古林业科技,2019,45(4):35-38.
23 王少昆,赵学勇,贾昆峰,等.乌拉特荒漠草原小针茅(Stipa klemenzii)群落土壤细菌多样性及垂直分布特征[J].中国沙漠,2016,36(6):1564-1570.
24 曲浩,赵学勇,王少昆,等.乌拉特荒漠草原不同植被群落对土壤碳、氮的影响[J].草业科学,2014,31(3):355-360.
25 瑙珉,田凯,潘瑞萍.乌拉特保护区内封育措施对天然梭梭林恢复过程的影响[J].内蒙古林业调查设计,2015,38(3):41-44.
26 Mohd Yusoff M Z, Hu A, Feng C,et al.Influence of pretreated activated sludge for electricity generation in microbial fuel cell application[J].Bioresource Technology,2013,145:90-96.
27 Adams R I, Miletto M, Taylor J W,et al.Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances[J].The ISME Journal,2013,7(7):1262-1273.
28 Edgar R C.UPARSE:highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,2013,10(10):996-998.
29 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
30 Schloss P D, Westcott S L, Ryabin T,et al.Introducing mothur: open-source,platform-independent, community-supported software for describing and comparing microbial communities[J].Applied and Environmental Microbiology,2009,75(23):7537.
31 贾鹏,杜国祯.生态学的多样性指数:功能与系统发育[J].生命科学,2014,26(2):153-157.
32 贺纪正,李晶,郑袁明.土壤生态系统微生物多样性-稳定性关系的思考[J].生物多样性,2013,21(4):411-420.
33 李学斌,张义凡,陈林,等.荒漠草原典型群落土壤粒径和养分的分布特征及其关系研究[J].西北植物学报,2017,37(8):1635-1644.
34 李得禄,李昌龙,姜生秀.梭梭林下土壤结皮对黄花补血草种群分布格局影响[J].草业科学,2020,37(11):2223-2233.
35 Chapin Iii F S, Matson P A, Vitousek P M.Principles of Terrestrial Ecosystem Ecology[M].Berlin, Germany: Springer,2002.
36 Wigginton S, Amador J A.Soil:Microbial Ecology[M].Boca Raton, USA:CRC Press,2020.
37 Wang S, Zuo X, Awada T,et al.Changes of soil bacterial and fungal community structure along a natural aridity gradient in desert grassland ecosystems,Inner Mongolia[J].CATENA,2021,205:105470.
38 Sessitsch A, Weilharter A, Gerzabek M H,et al.Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment[J].Applied and Environmental Microbiology,2001,67(9):4215-4224.
39 Gebhardt M, Fehmi J S, Rasmussen C,et al.Soil amendments alter plant biomass and soil microbial activity in a semi-desert grassland[J].Plant and Soil,2017,419(1):53-70.
40 Scola V, Ramond J, Frossard A,et al.Namib desert soil microbial community diversity, assembly, and function along a natural xeric gradient[J].Microbial Ecology,2018,75(1):193-203.
41 Maestre F, Delgado-Baquerizo M, Jeffries T,et al.Increasing aridity reduces soil microbial diversity and abundance in global drylands[J].Proceedings of the National Academy of Sciences of the United States of America,2015:112.
42 Brodie E, Edwards S, Clipson N.Soil fungal community structure in a temperate upland grassland soil[J].FEMS Microbiology Ecology,2003,45(2):105-114.
43 Wang S, Zuo X, Zhao X,et al.Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land,northern China[J].Environmental Monitoring and Assessment,2016,188(1):1-13.
44 曹红雨,高广磊,丁国栋,等.呼伦贝尔沙区4种生境土壤真菌群落结构和多样性[J].林业科学,2019,55(8):118-127.
45 Zhou Y, Jia X, Han L,et al.Fungal community diversity in soils along an elevation gradient in a Quercus aliena var.acuteserrata forest in Qinling Mountains,China[J].Applied Soil Ecology,2021,167:104104.
46 Yang Y, Cheng W, Pan X,et al.Soil bacterial and fungal diversities and its putative association with the distribution of Oncomelania hupensis in the Dongting Lake marshlands, China[J].Applied Soil Ecology,2021,157:103720.
47 Ye G, Lin Y, Luo J,et al.Responses of soil fungal diversity and community composition to long-term fertilization:field experiment in an acidic Ultisol and literature synthesis[J].Applied Soil Ecology,2020,145:103305.
Outlines

/