Adventitious root architecture and growth characteristics of Nitraria tangutorum shrub
Received date: 2021-10-21
Revised date: 2022-02-20
Online published: 2022-08-29
Root architecture and biomass allocation patterns can effectively reflect the adaptive strategies of plants to arid and infertile environments. Abstract: In this study, Nitraria tangutorum shrub in the West Ordos National Nature Reserve was used as the research object, and the characteristics of the root architecture and biomass allocation pattern of the shrub were investigated by using the traditional excavation method. The results showed as follows :(1) the main adventitious roots in Nitraria tangutorum shrub at different growth stages were vertical deep-root type. (2) The root topological index TI and the modified topological parameters qa and qb were 0.98, 0.95 and 0.52, respectively. The developmental stages were 0.87, 0.69, 0.46. The mature stage is 0.85, 0.63, 0.63. The branching rate of shrub in embryonic stage decreased by 8.96% and 30.05% compared with that in developing and mature stage, respectively. With the development of Nitraria tangutorum shrub, the root diameter of different levels increased gradually, the shrub branches became more complex, and the utilization range of resources expanded gradually. However, compared with the adventitious roots, the biomass distribution center was always inclined to the aboveground part of the shrub. (3) Compared with the embryonic stage and development stage, the ratio of coarse root (tertiary root) and fine root (secondary root and primary root) of the adventitious roots in the mature stage decreased by 32.75% and 0.83%, respectively. In the process of growth, Nitraria tangutorum shrub adapted to the stress environment by increasing the branching rate of its adventitious roots and the biomass of its aboveground and fine roots.
Xiaole Li , Xiaohong Dang , Bo Zhai , Yajuan Wei , Xu Chi , Huimin Wu . Adventitious root architecture and growth characteristics of Nitraria tangutorum shrub[J]. Journal of Desert Research, 2022 , 42(4) : 172 -180 . DOI: 10.7522/j.issn.1000-694X.2022.00021
1 | Dannowski M, Block A.Fractal geometry and root system structures of heterogeneous plant communities[J].Plant and Soil,2005,272(1/2):61-76. |
2 | Lynch J.Root architecture and plant productivity[J].Plant Physiology,1995,109(1):7-13. |
3 | Savinov I A.Architectural analysis of representatives of the Celastrales Order:structure and rhythm of shoot development in connection with adaptations of species to different environmental conditions[J].Contemporary Problems of Ecology,2020,13(3):300-308. |
4 | Odum E P, Barrett G W.Fundamentals of Ecology[M].Philadelphia,USA:Saunders,1971. |
5 | 孙儒泳,李庆芬,牛翠娟,等.基础生态学[M].北京:高等教育出版社,2002. |
6 | 单立山,李毅,董秋莲,等.红砂根系构型对干旱的生态适应[J].中国沙漠,2012,32(5):1283-1290. |
7 | 杨小林,张希明,李义玲,等.塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略[J].植物生态学报,2008,32(6):1268-1276. |
8 | 肖遥,陶冶,张元明.古尔班通古特沙漠4种荒漠草本植物不同生长期的生物量分配与叶片化学计量特征[J].植物生态学报,2014,38(9):929-940. |
9 | 徐道龙.西鄂尔多斯荒漠6种珍稀植物菌根及共生微生物多样性研究[D].呼和浩特:内蒙古大学,2021. |
10 | Li J, Zhao Y, Liu H,et al.Sandy desertification cycles in the southwestern Mu Us Desert in China over the past 80 years recorded based on nebkha sediments[J].Aeolian Research,2016,20:100-107. |
11 | 常兆丰,张进虎,石学刚,等.沙漠植物分层侧影与积沙成丘的关系[J].生态学报,2017,37(21):7351-7358. |
12 | 党晓宏,蒙仲举,高永,等.西鄂尔多斯地区5种荒漠灌丛光合固碳能力研究[J].干旱区资源与环境,2017,31(11):128-135. |
13 | 张萍,康经理,袁瑱,等.两类植物型沙丘上植物群落的异同及其对沙丘形态的响应[J].生态学报,2017,37(23):7920-7927. |
14 | 靳虎甲,马全林,何明珠,等.石羊河下游白刺灌丛演替过程中群落结构及数量特征[J].生态学报,2013,33(7):2248-2259. |
15 | Steingraeber D A, Waller D M.Non-stationarity of tree branching patterns and bifurcation ratios[J].Proceedings of the Royal Society of London.Series B,Biological Sciences,1986,228(1251):187-194. |
16 | Berntson G M.The characterization of topology:a comparison of four topological indices for rooted binary trees[J].Journal of Theoretical Biology,1995,177(3):271-281. |
17 | 高广磊,丁国栋,赵媛媛,等.生物结皮发育对毛乌素沙地土壤粒度特征的影响[J].农业机械学报,2014,45(1):115-120. |
18 | Fitter A H.An architectural approach to the comparative ecology of plant root systems[J].New Phytologist,1987,106(1):61-77. |
19 | Bouma T J, Nielsen K L, Van Hal J,et al.Root system topology and diameter distribution of species from habitats differing in inundation frequency[J].Functional Ecology,2001,15(3):360-369. |
20 | Oppelt A L, Kurth W, Godbold D L.Topology,scaling relations and Leonardo's rule in root systems from African tree species[J].Tree Physiology,2001,21(2/3):117-128. |
21 | Niklas K J.Modelling below-and above-ground biomass for non-woody and woody plants[J].Annals of Botany,2005,95(2):315-321. |
22 | Nquist B J, Niklas K J.Global allocation rules for patterns of biomass partitioning in seed plants[J].Science,2002,295(5559):1517-1520. |
23 | 张扬,李程远,韩少杰,等.典型黑土区主要树种根系构型特征及其对固土能力的影响[J].应用生态学报,2021,32(5):1726-1734. |
24 | 马献发,宋凤斌,张继舟.根系对土壤环境胁迫响应的研究进展[J].中国农学通报,2011,27(5):44-48. |
25 | Angela H, Graziella B, Claude D,et al.Plant root growth,architecture and function[J].Plant and Soil,2009,321(1/2):153-187. |
26 | 吴静,盛茂银,肖海龙,等.西南喀斯特石漠化环境适生植物细根构型及其与细根和根际土壤养分计量特征的相关性[J].生态学报,2022,42(2):677-687. |
27 | 李尝君,郭京衡,曾凡江,等.多枝柽柳(Tamarix ramosissima)根、冠构型的年龄差异及其适应意义[J].中国沙漠,2015,35(2):365-372. |
28 | 班芷桦,王琼.喜旱莲子草和接骨草竞争对模拟增温的响应[J].植物生态学报,2015,39(1):43-51. |
29 | 单立山,李毅,任伟,等.河西走廊中部两种荒漠植物根系构型特征[J].应用生态学报,2013,24(1):25-31. |
30 | 木巴热克·阿尤普,陈亚宁,李卫红,等.极端干旱环境下的胡杨细根分布与土壤特征[J].中国沙漠,2011,31(6):1449-1458. |
31 | Meyer K M, Ward D, Wiegand K,et al.Multi-proxy evidence for competition between savanna woody species[J].Perspectives in Plant Ecology,Evolution and Systematics,2007,10(1):63-72. |
32 | 李珍玉,欧阳淼,肖宏彬,等.基于根系构型的调控提高植物边坡根系固土能力[J].岩土力学,2021,(12):1-11. |
33 | 党晓宏,高永,蒙仲举,等.西鄂尔多斯地区5种荒漠优势灌丛生物量分配格局及预测模型[J].中国沙漠,2017,37(1):100-108. |
34 | 杜建会,严平,董玉祥.干旱地区灌丛沙堆研究现状与展望[J].地理学报,2010,65(3):339-350. |
35 | 孙越,何怀江,李良,等.阔叶红松林下6种早夏草本不同生长期生物量分配及模型构建[J].生态学报,2017,37(19):6523-6533. |
36 | 仇瑶,常顺利,张毓涛,等.天山林区六种灌木生物量的建模及其器官分配的适应性[J].生态学报,2015,35(23):7842-7851. |
37 | 刘瑞,靳虎甲,马全林,等.甘肃景电灌区不同栽植年限枸杞生物量分配特征[J].生态学杂志,2012,31(10):2493-2500. |
38 | 王向荣,王政权,韩有志,等.水曲柳和落叶松不同根序之间细根直径的变异研究[J].植物生态学报,2005,29(6):5-11. |
/
〈 |
|
〉 |