img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Assessment of soil quality in typical wind erosion area of Qaidam Basin

  • Mengzhen Huang ,
  • Ruijie Lu ,
  • Jin Zhao ,
  • Luo Ma
Expand
  • MOE Engineering Research Center of Desertification and Blown-sand Control / State Key Laboratory of Earth Surface Processes and Resource Ecology,Beijing Normal University,Beijing 100875,China

Received date: 2022-08-03

  Revised date: 2022-09-29

  Online published: 2023-05-31

Abstract

Soil quality assessment is the key to effectively protect soil, and it is crucial to ensure ecosystem stability, regional ecological security and sustainable development. The Qaidam Basin is the most serious wind erosion area in the Qinghai-Tibet Plateau. The change of soil system caused by wind erosion has a profound impact on the ecological security barrier and water conservation function of the Qinghai-Tibet Plateau. Based on the analysis of physical and chemical properties of surface soil in typical wind erosion areas of Qaidam Basin, this paper uses principal component analysis to establish the minimum data set, and constructs the comprehensive index of soil quality for soil quality evaluation. The results show that the soil bulk density, calcium carbonate, organic matter, total nitrogen, total phosphorus and available phosphorus content in Qaidam Basin only reach the fourth or fifth grade under the quality classification standard of the second national soil census. The quality of soil physical and chemical indicators is poor. In terms of spatial distribution, the contents of organic matter, total nitrogen, available phosphorus, total phosphorus and sand in the eastern region of Qaidam Basin are higher than those in the western region, while the contents of available potassium and gravel in the western region are higher than those in the eastern region. The minimum data set ( MDS ) of soil quality evaluation in Qaidam Basin includes five indicators : bulk density, organic matter, total phosphorus, available potassium and sand content. The soil quality comprehensive index ( MDS-SQI ) based on the MDS has good representativeness and applicability. The overall soil quality in Qaidam Basin is poor, and gradually deteriorates from the eastern region to the western region. The soil quality in the study area is divided into grade I-V from good to poor. Grade I-II sampling points are mainly distributed in the eastern region, and the area is small. Grade III-V sampling points are mainly distributed in the central and western regions. The wind erosion intensity in Qaidam Basin is significantly negatively correlated with MDS-SQI, and the prevention and control of soil wind erosion in Qaidam Basin is an important measure to curb the continuous deterioration of soil quality.

Cite this article

Mengzhen Huang , Ruijie Lu , Jin Zhao , Luo Ma . Assessment of soil quality in typical wind erosion area of Qaidam Basin[J]. Journal of Desert Research, 2023 , 43(3) : 199 -209 . DOI: 10.7522/j.issn.1000-694X.2022.00125

References

1 Lehmann J, Bossio D A, Kogel-Knabner I,et al.The concept and future prospects of soil health[J].Nature Reviews Earth & Environment,2020,1(10):544-553.
2 张桃林,潘剑君,赵其国.土壤质量研究进展与方向[J].土壤,1999,19(1):2-8.
3 刘占锋,傅伯杰,刘国华,等.土壤质量与土壤质量指标及其评价[J].生态学报,2006(3):901-913.
4 Doran J W, Parkin T B.Defining and assessing soil quality[M]//Doran J W,Coleman D C,Bezdicek D F,et al.Defining and Assessing Soil Quality for a Sustainable Environment.SSSA Special Publication 35,American Society of Agronomy,1994:3-21.
5 孙鸿烈,郑度,姚檀栋,等.青藏高原国家生态安全屏障保护与建设[J].地理学报,2012,67(1):3-12.
6 王辉.玛曲高寒草甸沙化特征及沙化驱动机制研究[D].兰州:兰州大学,2007.
7 王发科,苟日多杰,祁贵明,等.柴达木盆地气候变化对荒漠化的影响[J].干旱气象,2007(3):28-33.
8 张福良,李青基,李积文,等.柴达木盆地水土流失现状及防治对策[J].中国水利,2012(18):43-44.
9 陈发虎,汪亚峰,甄晓林,等.全球变化下的青藏高原环境影响及应对策略研究[J].中国藏学,2021(4):21-28.
10 曹雪,焦菊英,李建军,等.青藏高原柴达木盆地东部地区的土壤侵蚀现状调查[J].水土保持通报,2021,41(5):1-8.
11 张胜邦,董旭,刘玉璋,等.柴达木盆地东南部土壤风蚀研究[J].中国沙漠,1999,19(3):96-98.
12 刘红英,董治宝.柴达木盆地雅丹形态特征及成因[J].中国沙漠,2019,39(3):214-220.
13 丁召静.柴达木盆地雅丹释光年代学及其环境意义[D].北京:中国地质大学(北京),2020.
14 赵串串,董旭,辛文荣,等.柴达木盆地土地沙漠化现状分析与治理对策研究[J].水土保持通报,2009,29(1):196-199.
15 李鑫,张文菊,邬磊,等.土壤质量评价指标体系的构建及评价方法[J].中国农业科学,2021,54(14):3043-3056.
16 张雪,孔范龙,姜志翔.基于生态功能的滨海湿地土壤质量综合评价方法构建及实证分析[J].环境科学,2022,43(5):2709-2718.
17 刘文民,田鹏,刘利昆,等.青藏高原典型沙化区草地土壤质量评价[J].水土保持研究,2022,29(2):118-124.
18 杨冲,王春燕,王文颖,等.青藏高原黄河源区高寒草地土壤营养特征变化及质量评价[J].生态环境学报,2022,31(5):896-908.
19 奥勇,蒋嶺峰,白召弟,等.基于格网GIS的黄河流域土地生态质量综合评价[J].干旱区地理,2022,45(1):164-175.
20 刘伟玮,刘某承,李文华,等.辽东山区林参复合经营土壤质量评价[J].生态学报,2017,37(8):2631-2641.
21 李桂林,陈杰,檀满枝,等.基于土地利用变化建立土壤质量评价最小数据集[J].土壤学报,2008,45(1):16-25.
22 李桂林,陈杰,孙志英,等.基于土壤特征和土地利用变化的土壤质量评价最小数据集确定[J].生态学报,2007,27(7):2715-2724.
23 邓绍欢,曾令涛,关强,等.基于最小数据集的南方地区冷浸田土壤质量评价[J].土壤学报,2016,53(5):1326-1333.
24 陈方正,任健,刘思涵,等.基于最小数据集的洞庭湖流域南部耕地土壤肥力综合评价[J].土壤通报,2021,52(6):1348-1359.
25 朱鸣鸣,徐镀涵,陈光燕,等.基于最小数据集的喀斯特不同利用方式下土壤质量评价[J].草地学报,2021,29(10):2323-2331.
26 廖程,王德伟,唐亮,等.基于最小数据集的成都平原某区土壤养分综合评价体系的构建[J].地球与环境,2021,49(2):189-197.
27 王文武,朱万泽,李霞,等.基于最小数据集的大渡河干暖河谷典型植被土壤质量评价[J].中国水土保持科学(中英文),2021,19(6):54-59.
28 刘利昆,赵广举,穆兴民,等.基于最小数据集的青藏公路沿线土壤质量评价[J].水土保持研究,2022,29(2):125-131.
29 赵孝丹,颜雄,李文昭,等.基于CNKI数据库的土壤质量评价文献计量分析[J].河南农业,2021(35):56-58.
30 白刚刚,赵瑛,陈菊林,等.柴达木盆地泥石流灾害特征与治理[J].青海大学学报,2016,34(5):58-62.
31 刘秋漫.近30年来柴达木盆地遥感生态环境质量评价[D].西宁:青海师范大学,2020.
32 辛莹,舒锴,戴黎聪,等.青藏高原柴达木盆地高寒荒漠土壤有机碳空间特征[J].中国草地学报,2021,43(11):113-118.
33 张斯琦,陈辉,宋明华,等.2000-2015年柴达木盆地植被覆盖度时空变化及其与环境因子的关系[J].干旱区地理,2019,42(5):1124-1132.
34 土壤检测第4部分:土壤容重的测定: [S].
35 土壤pH值的测定 电位法: [S].
36 森林土壤碳酸钙的测定: [S].
37 土壤检测第6部分:土壤有机质的测定: [S].
38 土壤检测第24部分:土壤全氮的测定 自动定氮仪法: [S].
39 段世航,崔若然,江荣风,等.激光衍射法测定土壤粒径分布的研究进展[J].土壤,2020,52(2):247-253.
40 土壤全磷测定法: [S].
41 土壤 有效磷的测定 碳酸氢钠浸提-钼锑抗分光光度法: [S].
42 森林土壤钾的测定: [S].
43 刘金山,胡承孝,孙学成,等.基于最小数据集和模糊数学法的水旱轮作区土壤肥力质量评价[J].土壤通报,2012,43(5):1145-1150.
44 全国土壤普查办公室. 中国土壤 [S].北京:中国农业出版社,1988.
45 付贵全.生物炭对荒漠草地风沙土质量的影响研究[D].兰州:兰州大学,2022.
46 李月梅.柴达木盆地枸杞种植区土壤养分空间变异特征[J].西南农业学报,2018,31(8):1643-1648.
47 刘江,袁勤,张立欣,等.库布齐沙漠北缘不同人工灌木林地土壤肥力质量状况[J].西北林学院学报,2021,36(2):46-53.
48 赵正,刘纯,尚明月,等.宁镇丘陵区村域小流域不同土壤景观下表土质量变化及评价[J].水土保持学报,2022,36(4):265-276.
49 余坤,李国建,李百凤,等.不同秸秆还田方式对土壤质量改良效应的综合评价[J].干旱地区农业研究,2020,38(3):213-221.
50 陈梦迪,陈奇伯,黎建强,等.枯落物不同输入方式对云南松林地土壤质量的影响评价[J].云南农业大学学报(自然科学),2020,35(1):149-155.
51 高娃,景宇鹏,樊明寿,等.土默川平原盐渍化土地不同利用方式的土壤质量评价[J].中国土壤与肥料,2019(6):22-31.
52 吴秀芝,刘秉儒,阎欣,等.荒漠草地土壤微生物生物量和微生物熵对沙漠化的响应[J].应用生态学报,2019,30(8):2691-2698.
53 靳正忠,雷加强,徐新文,等.塔里木沙漠公路防护林土壤微生物生物量与土壤环境因子的关系[J].应用生态学报,2009,20(1):51-57.
54 赵哈林,周瑞莲,苏永中,等.我国北方半干旱地区土壤的沙漠化演变过程与机制[J].水土保持学报,2007(3):1-5.
55 Jason P F, Jayne B, David D B,et al.The ecology of dust[J].Front of Ecological Environment,2010,8(8):423-430.
56 丁国栋.风沙物理学[M].北京:中国林业出版社,2010:157-158.
57 Vogel C, Heister K, Buegger F,et al.Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions[J].Biology and Fertility of Soils,2015,51(4):427-442.
58 刘昀东,高广磊,丁国栋,等.风蚀荒漠化地区土壤质量演变研究进展[J].南京林业大学学报(自然科学版),2017,41(5):161-168.
59 陈金凤,余世钦,符加方,等.华南红层地貌区不同利用方式土壤质量特征及其影响因素:以南雄盆地为例[J].生态环境学报,2022,31(5):918-930.
60 俞海,黄季焜, Rozelle Scott,等.土壤肥力变化的社会经济影响因素分析[J].资源科学,2003(2):63-72.
61 Tan Z, Lal R, Owens L,et al. Distribution of light and heavey fractions of soil organic carbon as related to land use and tillage practice[J].Soil & Tillage Research,2007,92:53-59.
62 曹鹤,薛立,谢腾芳,等.华南地区八种人工林的土壤物理性质[J].生态学杂志,2009,28(4):620-625.
63 周波,高云华,张池,等.华南赤红壤地区4种不同耕作模式对土壤肥力属性的影响[J].华北农学报,2012,27():315-319.
64 黄绍文,金继运,杨俐苹,等.县级区域粮田土壤养分空间变异与分区管理技术研究[J].土壤学报,2003,40(1):79-88.
65 雷咏雯,危常州,李俊华,等.不同尺度下土壤养分空间变异特征的研究[J].土壤,2004,36(4):376-381.
66 赵彦锋,史学正,于东升,等.小尺度土壤养分的空间变异及其影响因素探讨:以江苏省无锡市典型城乡交错区为例[J].土壤通报,2006,37(2):2214-2219.
67 杨艳丽,史学正,于东升,等.区域尺度土壤养分空间变异及其影响因素研究[J].地理科学,2008,28(6):788-792.
68 陈国平,程珊珊,丛明旸,等.三种阔叶林凋落物对下层土壤养分的影响[J].生态学杂志,2014,33(4):874-879.
69 汉光昭,曹广超,曹生奎,等.高寒地区生态修复草地和林地土壤颗粒有机碳分解特征[J].中国沙漠,2022,42(5):36-43.
70 王林林,刘普幸,王允.近14年来柴达木盆地NDVI时空变化及其影响因素[J].生态学杂志,2015,34(6):1713-1722.
71 吕春艳,李旭,刘明歆,等.柴达木盆地1981-2017年降水及大气环流特征分析[J].沙漠与绿洲气象,2020,14(3):78-87.
72 高三星保,许学莲,何爱兵,等.1961-2018年柴达木盆地大风日数变化特征[J].现代农业科技,2021(20):163-165.
73 曹晓云,祝存兄,陈国茜,等.2000-2021年柴达木盆地地表绿度变化及地形分异研究[J].生态环境学报,2022,31(6):1080-1090.
74 杜庆,孙世洲.柴达木盆地植被考察简况[J].植物生态学与地植物学丛刊,1981(1):77-78.
Outlines

/