img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Temporal and spatial pattern of NPP in Yulin and its influencing factors during the desertification reversal

  • Xiao Feng ,
  • Jianjun Qu ,
  • Xinhui Ding ,
  • Qin Tian ,
  • Qingbin Fan
Expand
  • 1.College of Geography and Environment,Xianyang Normal University,Xianyang 712000,Shaanxi,China
    2.College of Urban and Environmental Sciences,Northwest University,Xi'an 710100,China
    3.Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China

Received date: 2023-02-10

  Revised date: 2023-05-17

  Online published: 2023-12-26

Abstract

An in-depth understanding of the spatial and temporal pattern of NPP and its influencing factors during the process of desertification reversal is of great scientific significance for the regulation of carbon cycle and the implementation of ecological engineering in desertification reversal zone. This paper estimated the values of NPP in Yulin from 2000 to 2020 using CASA model, and quantitatively analyzed the impact of climate change and human activities on NPP change through difference analysis, trend analysis and correlation analysis. The results showed that: (1) During the desertification reversal process, the values of NPP (calculation in C) of Yulin showed a fluctuating and increasing trend with a rate of 12.39 g·m-2·a-1, and displayed a spatial distribution pattern of low west and high east. The area with an increasing trend of changing NPP accounted for 98.4% of the total area of Yulin, and only 1.6% showed a decreasing trend. (2) The correlation between the NPP and the temperature was not significant, but the NPP was positively correlated with precipitation. The influence of human activities on NPP was mainly positive. (3) The change of NPP in the Mu Us Sandy Land in western Yulin was dominated by climate change, showing more sensitive to changes in precipitation. The change of NPP in the central and eastern regions of Yulin was dominated by human activities. The areas dominated by climate change and human activities accounted for 43.1% and 56.9% of the total area of Yulin, respectively. The restoration of vegetation in the sandy area of western Yulin was subject to the supply of water resources, and human activities such as returning farmland to forest in the central and eastern regions have shown a more positive effect on the restoration of vegetation.

Cite this article

Xiao Feng , Jianjun Qu , Xinhui Ding , Qin Tian , Qingbin Fan . Temporal and spatial pattern of NPP in Yulin and its influencing factors during the desertification reversal[J]. Journal of Desert Research, 2024 , 44(1) : 22 -32 . DOI: 10.7522/j.issn.1000-694X.2023.00066

References

1 方精云,郭兆迪,朴世龙,等.1981-2000年中国陆地植被碳汇的估算[J].中国科学:D辑,2007,37(6):804-812.
2 李诗瑶,丛士翔,王融融,等.气候变化和人类活动对盐池县植被净初级生产力的影响[J].干旱区地理,2022,45(4):1186-1199.
3 李登科,王钊.气候变化和人类活动对陕西省植被NPP影响的定量分析[J].生态环境学报,2022,31(6):1071-1079.
4 杨丹,王晓峰.黄土高原气候和人类活动对植被NPP变化的影响[J].干旱区研究,2022,39(2):584-593.
5 Ge W Y, Deng L Q, Wang F,et al.Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016[J].Science of the Total Environment,2021,773:145648.
6 石智宇,王雅婷,赵清,等.2001—2020年中国植被净初级生产力时空变化及其驱动机制分析[J].生态环境学报,2022,31(11):2111-2123.
7 刘杰,汲玉河,周广胜,等.2000—2020年青藏高原植被净初级生产力时空变化及其气候驱动作用[J].应用生态学报,2022,33(6):1533-1538.
8 Zhang Y, Hu Q W, Zou F L.Spatio-temporal changes of vegetation Net Primary Productivity and its driving factors on the Qinghai-Tibetan Plateau from 2001 to 2017[J].Remote Sensing,2021,13(8):1566-1587.
9 魏建洲.黄土高原草地植被变化及其驱动力分析[D].兰州:兰州大学,2020.
10 高艳妮,于贵瑞,张黎,等.中国陆地生态系统净初级生产力变化特征:基于过程模型和遥感模型的评估结果[J].地理科学进展,2012,31(1):109-117.
11 朱文泉,潘耀忠,张锦水.中国陆地植被净初级生产力遥感估算[J].植物生态学报,2007,31(3):413-424.
12 朱志辉.自然植被净第一性生产力估计模型[J].科学通报,1993,38(15):1422-1426.
13 朱莹莹,韩磊,赵永华,等.中国西北地区NPP模拟及其时空格局[J].生态学杂志,2019,38(6):1861-1871.
14 Nemani R R, Keeling C D, Hashimoto H,et al.Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J].Science,2003,300(5625):1560-1563.
15 Zhu W Q, Pan Y Z, Yang X Q,et al.Comprehensive analysis of the impact of climatic changes on Chinese terrestrial net primary productivity[J].Chinese Science Bulletin,2007,52(23):3253-3260.
16 Wu L Z, Ma X F, Dou X,et al.Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia[J].Science of The Total Environment,2021,796:149055.
17 李登科,王钊.退耕还林后陕西省植被覆盖度变化及其对气候的响应[J].生态学杂志,2020,39(1):1-10.
18 Niu Q F, Xiao X M, Zhang Y,et al.Ecological engineering projects increased vegetation cover,production,and biomass in semiarid and subhumid Northern China[J].Land Degradation & Development,2019,30(13):1620-1631.
19 Tong X W, Brandt M, Yue Y M,et al.Increased vegetation growth and carbon stock in China karst via ecological engineering[J].Nature Sustainability,2018,1(1):44-50.
20 李晓岚.毛乌素沙地沙漠化逆转过程及成因分析[D].西安:陕西师范大学,2017.
21 贺军奇,魏燕,高万德,等.毛乌素沙地东南缘植被NDVI时空变化及其对气候因子的响应[J].干旱区地理,2022,45(5):1523-1533.
22 刘凤,曾永年.2000-2015年青海高原植被碳源/汇时空格局及变化[J].生态学报,2021,41(14):12.
23 朱文泉.中国陆地生态系统植被净初级生产力遥感估算及其与气候变化关系的研究[D].北京:北京师范大学,2005.
24 朱文泉,潘耀忠,何浩,等.中国典型植被最大光利用率模拟[J].科学通报,2006,51(6):700-706.
25 Lieth H.Primary productivity:terrstrial ecosystems[J].Human Ecology,1973,1(4):303-332.
26 Lieth H.Modeling the primary productivity of the world[J].Nature and Resources,1975,8(1):237-263.
27 石志华,刘梦云,吴健利,等.基于CASA模型的陕西省植被净初级生产力时空分析[J].水土保持通报,2016,36(1):206-211.
28 李玲.气候变化和人类活动对西北地区植被NPP变化的影响研究[D].西安:陕西师范大学,2019.
29 王钊,李登科.2000-2015年陕西植被净初级生产力时空分布特征及其驱动因素[J].应用生态学报,2018,29(6):1876-1884.
30 鲍超,方创琳.干旱区水资源开发利用对生态环境影响的研究进展与展望[J].地理科学进展,2008,27(3):38-46.
31 成佩昆,胡守庚,孙涛,等.陕西省退耕还林工程对植被恢复的效应:基于PCSE修正的面板数据模型[J].干旱区研究,2018,35(6):1477-1486.
Outlines

/