img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Cloning and expression of Alpha-L-Arabinofuranosidases Gene SpARAF1 from Stipagrostis pennata

  • Shan Yin ,
  • Rui Tang ,
  • Qingle Yin ,
  • Fei Wang ,
  • Rong Li ,
  • Hongbin Li
Expand
  • 1.College of Life Science /, Shihezi University,Shihezi 832003,Xinjiang,China
    2.Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology /, Shihezi University,Shihezi 832003,Xinjiang,China
    3.Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University,Shihezi 832003,Xinjiang,China

Received date: 2024-01-19

  Revised date: 2024-06-02

  Online published: 2024-12-06

Abstract

Alpha-L-Arabinofuranosidase (ARAF) plays an important role in plant cell wall formation and response to stress. In order to explore the mechanism and function of gene involved in resistance to abiotic stress and influence on the development of root sand jacket in grass. In this study, SpARAF1 gene was cloned and analyzed by bioinformatics, subcellular localization and real-time fluorescence quantitative PCR. The total length of SpARAF1 coding region is 1 173 bp, encoding 391 amino acids hydrophilic non-transmembrane protein, the relative molecular weight is 43.3 kD. Phylogenetic analysis showed that the protein encoded by this gene belongs to the Alpha-L-AF-C superfamily and is closely related to rice and maize. Subcellular localization showed that SpARAF1 was localized in the cell wall. The results of qRT-PCR showed that the expression of SpARAF1 was significantly induced by abiotic stress such as salt, drought and high temperature, which indicated that SpARAF1 was involved in the response process of Stipagrostis pennata to abiotic stress. Protein interaction prediction analysis showed that SpARAF1 may interact with carbohydrate kinase and polygalacturonase.

Cite this article

Shan Yin , Rui Tang , Qingle Yin , Fei Wang , Rong Li , Hongbin Li . Cloning and expression of Alpha-L-Arabinofuranosidases Gene SpARAF1 from Stipagrostis pennata[J]. Journal of Desert Research, 2024 , 44(6) : 48 -57 . DOI: 10.7522/j.issn.1000-694X.2024.00063

References

1 刘燕敏,周海燕,王康,等.植物对非生物胁迫的响应机制研究[J].安徽农业科学,2018,46(16):35-37.
2 李智.棉花非生物胁迫响应基因GhWRKY6的功能验证及调控机制的研究[D].河北保定:河北农业大学,2019.
3 赵亚洲,李生宇,王世杰,等.2001-2020年新疆风沙环境致灾潜力特征[J].中国沙漠,2023,43(3):274-283.
4 龙丽红,王慧,马晓丽,等.古尔班通古特沙漠羽毛针禾(Stipagrostis pennata)种群种子雨特征[J].干旱区研究,2014,31(3):516-522.
5 吴楠,史应武,朱秉坚,等.羽毛针禾(Stipagrostis pennata)根鞘中可培养细菌多样性[J].中国沙漠,2016,36(3):718-725.
6 Gautam T, Dutta M, Jaiswal V,et al.Emerging roles of SWEET sugar transporters in plant development and abiotic stress responses[J].Cells,2022,11(8):1303-1315.
7 Welling A, Palva E T.Molecular control of cold acclimation in trees[J].Physiologia Plantarum,2010,127(2):167-181.
8 王婷.水稻糖基转移酶基因UGT2和UGT3参与非生物胁迫响应的机理研究[D].济南:山东大学,2022.
9 Bohnert H J, Sheveleva E.Plant stress adaptations:making metabolism move[J].Current Opinion in Plant Biology,1998,1(3):267-274.
10 Baudrexl M, Fida T, Berk B,et al.Biochemical and structural characterization of thermostable gh159 glycoside hydrolases exhibiting α-l-arabinofuranosidase activity[J].Front Mol Biosci,2022,29(9):907-939.
11 Moore J P, Nguema-ona E, Chevalier L,et al.Response of the leaf cell wall to desiccation in the resurrection plant Myrothamnus flabellifolius [J].Plant Physiology,2006,141(2):651-662.
12 Moore J P, Nguema-Ona E E, Vicré-Gibouin M,et al.Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation[J].Planta,2013,237(3):739-754.
13 Arsovski A A, Popma T M, Haughn G W,et al.AtBXL1 encodes a bifunctional β-d-xylosidase/α-l-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells[J].Plant Physiology,2009,150(3):1219-1234.
14 彭程,肖文熙,倪辉,等.一种黑曲霉α-L-阿拉伯呋喃糖苷酶克隆表达、性质分析和果汁澄清效果[J].食品科学,2022,43(2):83-92.
15 Kaji A, Yoshihara O.Production and properties of alpha-L-Arabinofuranosidase from Corticium rolfsii [J].Applied Microbiology,1969,17(6):910-931.
16 Fulton L M, Cobbett C S.Two alpha-L-arabinofuranosidase genes in Arabidopsis thaliana are differentially expressed during vegetative growth and flower development[J].Journal Of Experimental Botany,2003,54(392):2467-2677.
17 Barnabás B, J?ger K, Fehér A.The effect of drought and heat stress on reproductive processes in cereals[J].Plant Cell Environment,2010,31(1):11-38.
18 Ding X, Zhang T, Ma L.Rapidly evolving genetic features for desert adaptations in Stipagrostis pennata [J].BMC Genomics,2021,22(1):846-854.
19 Golldack L.Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network[J].Plant Cell Reports,2011,30(8):1383-1391.
20 Rabbi S, Tighe M K, Flavel R,et al.Plant roots redesign the rhizosphere to alter the three‐dimensional physical architecture and water dynamics[J].New Phytologist,2018,21(9):542-550.
21 Wat M, Mccully M E, Canny M J.Formation and stabilization of rhizosheaths of Zea mays L.(Effect of soil water content)[J].Plant Physiology,1994,16(1):179-186.
22 孙博瀚,杨丹,王斐,等.沙漠植物羽毛针禾(Stipagrostis pennata)糖转运蛋白基因SpSWEET3的克隆与表达[J].中国沙漠,2023,43(5):129-138.
23 鄢梦雨,韦晓薇,曹婧,等.异子蓬SabHLH169基因的克隆及抗旱功能分析[J].生物技术通报,2023,39(11):328-339.
24 王广龙,杨舒婷,胡珍珠,等.大蒜AsMKK5基因克隆及其在渗透胁迫下的表达分析[J].植物生理学报,2023,59(9):1811-1818.
25 Li R, Cui K, Li H,et al.Selection of the reference genes for quantitative gene expression by RT-qPCR in the desert plant Stipagrostis pennata [J].Scientific Reports,2021,11(1):21711.
26 杨帅,高尚珠,卢晗,等.植物细胞壁形成及在非生物胁迫中的作用[J].植物生理学报,2023,59(7):1251-1264.
27 康红霞,伍国强,魏明,等.Na+/H+逆向转运蛋白在植物应答非生物逆境胁迫中的作用[J].植物生理学报,2022,58(3):511-523.
28 Le Hir R, Spinner L, Klemens P A,et al.Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis[J].Molecular Plant,2015,8(11):1687-1690.
29 郑晓雯,徐庭亮,田洁.大蒜糖转运蛋白基因AsSWEET14克隆与胁迫表达分析[J].植物生理学报,2023,59(8):1555-1565.
30 胡丽萍,张峰,徐惠,等.植物SWEET基因家族结构、功能及调控研究进展[J].生物技术通报,2017,33(4):27-37.
31 李鸿彬,李榕,王斐,等.一种羽毛针禾糖转运蛋白基因SpSWEET 13在促进植物根粘黏土壤中的应用[P].新疆维吾尔自治区:CN116200401A,2023-06-02.
32 Du Y, Zhao Q, Chen L,et al.Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings[J].Plant Physiology and Biochemistry,2020,14(6):1-12.
33 Chávez Montes R A, Ranocha P, Martinez Y,et al.Cell wall modifications in Arabidopsis plants with altered alpha-L-arabinofuranosidase activity[J].Plant Physiology,2008,147(1):63-77.
34 Lee S H, Lee Y E.Cloning,expression,and characterization of a thermostable GH51 α-L-arabinofuranosidase from Paenibacillus sp.DG-22[J].Journal of Microbiology and Biotechnology,2014,24(2):236-244.
35 Kotake T, Tsuchiya K, Aohara T,et al.An alpha-L-arabinofuranosidase/beta-D-xylosidase from immature seeds of radish (Raphanus sativus L.)[J].Journal of Experimental Botany,2006,57(10):2353-2362.
36 Barberis E, Marengo E, Manfredi M.Protein subcellular localization prediction[J].Methods in Molecular Biology,2021,23(61):197-212.
37 Sozzi G O, Greve L C, Prody G A,et al.Gibberellic acid,synthetic auxins,and ethylene differentially modulate alpha-L-Arabinofuranosidase activities in antisense 1-aminocyclopropane-1-carboxylic acid synthase tomato pericarp discs[J].Plant Physiology,2002,129(3):1330-1340.
38 Willats W G, Steele-King C G, Marcus S E,et al.Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation[J].The Plant Journal,1999,20(6):619-628.
39 Kurakake M, Kanbara Y, Murakami Y.Characteristics of α-L-arabinofuranosidase from Streptomyces sp I10-1 for production of L-arabinose from corn hull arabinoxylan[J].Applied Biochemistry and Biotechnology,2014,172(5):2650-2660.
40 McCleary B V, McKie V A, Draga A,et al.Hydrolysis of wheat flour arabinoxylan,acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase,α-L-arabinofuranosidase and β-xylosidase[J].Carbohydrate Research,2015,30(407):79-96.
Outlines

/