img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Algal-bacteria interactions and their potential functions in ecological restoration areas

  • Jingweng Zhang ,
  • Jinyue Yin ,
  • Jiaqi Huo ,
  • Feng Cheng ,
  • Na Gao ,
  • Rui Yang ,
  • Jingting Bao ,
  • Jin Wang
Expand
  • 1.College of Life Sciences,Shaanxi Normal University,Xi'an 710119,China
    2.School of Biological and Environmental Engineering,Xi'an University,Xi'an 710065,China
    3.Shapotou Desert Research and Experiment Station,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China

Received date: 2025-02-11

  Revised date: 2025-04-14

  Online published: 2025-06-30

Abstract

As a significant emerging technology in recent years for environmental pollution control and degraded ecological environment restoration, algal-bacterial symbiosis has received extensive attention. The fungal and algal components demonstrate intricate interconnections across physiological and biochemical mechanisms, encompassing physical structural associations, biogeochemical nutrient cycling, and cellular signal transduction pathways. Currently, this technology can be applied to various fields including water pollution control, aquaculture tailwater treatment, and soil remediation, playing a crucial role in the green restoration of the ecological environment. However, current research still faces challenges. The symbiotic mechanism has not been fully clarified, and the long-term stability and controllability of the symbiotic system in complex environments require in depth exploration. This study synthesizes contemporary scholarship on fungal-algal symbiotic systems, this paper analyzes the research progress of the algal-bacterial symbiotic mechanism and ecological restoration practices, looks ahead to the future development direction of algal-bacterial symbiosis, and provides theoretical and practical references for further research in related fields of soil desertification control.

Cite this article

Jingweng Zhang , Jinyue Yin , Jiaqi Huo , Feng Cheng , Na Gao , Rui Yang , Jingting Bao , Jin Wang . Algal-bacteria interactions and their potential functions in ecological restoration areas[J]. Journal of Desert Research, 2025 , 45(3) : 93 -101 . DOI: 10.7522/j.issn.1000-694X.2025.00077

References

1 潘昌祥,欧阳茜如,廖梦榆,等.西北干旱区沙漠化土地生态修复技术及沙产业的适用范围[J].中国沙漠202343(5):155-165.
2 徐佳杰,张妮,谢周云,等.基于文献计量的菌藻共生技术研究现状及发展趋势[J].环境科学学报202343(7):401-412.
3 Rolshausen G, Hallman U, Grande F D,et al.Expanding the mutualistic niche:parallel symbiont turnover along climatic gradients[J].Proceedings.Biological Sciences2020287(1924):20192311.
4 Ramanan R, Kim B H, Cho D H,et al.Algae-bacteria interactions:Evolution,ecology and emerging applications[J].Biotechnology Advances201634(1):14-29.
5 金忠友,陈志宏,郑政,等.水环境菌藻共生相互作用研究进展[J].环境污染与防治202345(6):870-874.
6 刘园园.着生藻类和浮游藻类在三峡库区河流健康评价中的适宜性比较研究[D].重庆:西南大学,2018.
7 郑强,贺博闻,史文卿,等.海洋超微型蓝细菌聚球藻的生态学研究进展[J].厦门大学学报(自然科学版)202362(3):301-313.
8 Zhang M, Lu T, Paerl H W,et al.Feedback regulation between aquatic microorganisms and the bloom-forming cyanobacterium Microcystis aeruginosa [J].Applied and Environmental Microbiology201985(21):e01362-19.
9 Liu X Y, Hong Y, Zhai Q Y,et al.Performance and mechanism of Chlorella in swine wastewater treatment:roles of nitrogen-phosphorus ratio adjustment and indigenous bacteria[J].Bioresource Technology2022358:127402.
10 Schvarcz C R, Wilson S T, Caffin M,et al.Overlooked and widespread pennate diatom-diazotroph symbioses in the sea[J].Nature Communications202213(1):799.
11 张增虎,唐丽丽,张永雨.海洋中藻菌相互关系及其生态功能[J].微生物学通报201845(9):2043-2053.
12 Pichler G, Muggia L, Carniel F C,et al.How to build a lichen:from metabolite release to symbiotic interplay[J].New Phytologist2023238(4):1362-1378.
13 李新荣,张元明,赵允格.生物土壤结皮研究:进展、前沿与展望[J].地球科学进展200924(1):11-24.
14 Wang Y, Li R, Wang D,et al.Regulation of symbiotic interactions and primitive lichen differentiation by UMP1 MAP kinase in Umbilicaria muhlenbergii [J].Nature Communications202314(1):6972.
15 鲍婧婷,孙靖尧,王进.生物土壤结皮中微生物群落特征综述[J].中国沙漠202242(6):33-43.
16 Du Z Y, Alvaro J, Hyden B,et al.Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata [J].Biotechnology for Biofuels and Bioproducts201811:174.
17 Du Z Y, Zienkiewicz K, Vande Pol N,et al.Algal-fungal symbiosis leads to photosynthetic mycelium[J].eLife20198:e47815.
18 Villacorte L O, Ekowati Y, Calix-Ponce H N,et al.Improved method for measuring transparent exopolymer particles (TEP) and their precursors in fresh and saline water[J].Water Research201570:300-12.
19 Lipsman V, Shlakhter O, Rocha J,et al.Bacteria contribute exopolysaccharides to an algal-bacterial joint extracellular matrix[J].NPJ Biofilms and Microbiomes202410(1):36-43.
20 Bonfante P.Algae and fungi move from the past to the future[J].eLife20198:e49448.
21 Mu?oz-Marín M D C, Magasin J D, Zehr J P.Open ocean and coastal strains of the N2-fixing cyanobacterium UCYN-A have distinct transcriptomes[J].PLOS One202318(5):e0272674.
22 Lutzoni F, Nowak M D, Alfaro M E,et al.Contemporaneous radiations of fungi and plants linked to symbiosis[J].Nature Communications20189(1):5451.
23 任艳龙.复合式氧化沟-菌藻共生系统脱氮性能的试验研究[D].重庆:重庆大学,2015.
24 Cai T, Park S Y, Li Y.Nutrient recovery from wastewater streams by microalgae:status and prospects[J].Renewable and Sustainable Energy Reviews201319:360-369.
25 孙宏,李园成,王新,等.菌藻共生系统在生猪养殖污水处理中的应用及其互作机的研究进展[J].中国畜牧杂志202157(2):11-16.
26 Karya N, Van der Steen N P, Lens P N L.Photo-oxygenation to support nitrification in an algal-bacterial consortium treating artificial wastewater[J].Bioresource Technology2013134:244-250.
27 Xiong Z H, Ma H J, Huang G L,et al.Treating sewage using coimmobilized system of Chlorella pyrenoidosa and activated sludge[J].Environmental Technology200728(1):33-39.
28 刘静,赵海涛,盛海君,等.铁对太湖常见藻类生长及Ca2+、Mg2+离子吸收的影响[J].环境科学与技术201134(1):59-64.
29 Fallahi A, Rezvani F, Asgharnejad H,et al.Interactions of microalgae-bacteria consortia for nutrient removal from wastewater:a review[J].Chemosphere2021272:129878.
30 Lee J, Zhang L.The hierarchy quorum sensing network in Pseudomonas aeruginosa [J].Protein Cell20156:26-41.
31 宋水山,赵芊.细菌群体感应及其信号分子介导的植物-细菌跨界信息交流[J].微生物学杂志201838(1):1-11.
32 方艺苓.基于微生物群体感应的菌藻共生MBR污染物强化去除机制及膜污染控制研究[D].济南:济南大学,2023.
33 Amin S A, Hmelo L R, van Tol H M,et al.Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria[J].Nature2015522(7554):98-101.
34 Dow L.How do quorum-sensing signals mediate algae-bacteria interactions[J].Microorganisms20219(7):1391.
35 Kaufmann G F, Sartorio R, Lee S H,et al.Revisiting quorum sensing:discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones[J].Proceedings of the National Academy of Sciences of the United States of America2005102(2):309-314.
36 Liu Z, Wang J, Zhang S,et al.Formation characteristics of algal-bacteria granular sludge under low-light environment:from sludge characteristics,extracellular polymeric substances to microbial community[J].Bioresource Technology2023376:128851.
37 Wang S, Zhang Y, Ge H,et al.Cultivation of algal-bacterial granular sludge and degradation characteristics of tetracycline[J].Water Environment Research202395(3):e10846.
38 Elahinik A, Haarsma M, Abbas B,et al.Glycerol conversion by aerobic granular sludge[J].Water Research2022227:119340.
39 位文倩,孙昕.菌藻共培养对栅藻去除生活污水中氮磷和脂质积累的影响[J].环境化学202342(2):646-657.
40 易鑫.利用菌藻颗粒污泥处理低浓度市政废水的研究[D].大连:大连海洋大学,2024.
41 廖怀玉,孙丽,李济斌,等.菌-藻共生生物膜污水处理研究进展[J].土木与环境工程学报(中英文)202143(4):141-153.
42 Ren Z, Fu R, Sun L,et al.Unraveling biological behavior and influence of magnetic iron-based nanoparticles in algal-bacterial systems:a comprehensive review[J].Science of the Total Environment2024915:169852.
43 Leong Y K, Chang J S.Bioremediation of heavy metals using microalgae:recent advances and mechanisms[J].Bioresource Technology2020303:122886.
44 马垚.土壤中铁氧化物对重金属的微生物吸附原理及现状分析[J].现代园艺202043(5):33-35.
45 Qin G, Niu Z, Yu J,et al.Soil heavy metal pollution and food safety in China:Effects,sources and removing technology[J].Chemosphere2021267:129205.
46 唐璐,何彩群,张志鹏.土壤污染现状调查与土壤保护策略分析[J].皮革制作与环保科技20245(11):143-145.
47 Sarkar P, Roy A, Pal S,et al.Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation[J].Bioresource Technology2017242:15-27.
48 滕菲.正构烷烃降解菌的筛选及降解过程中的变化特征[D].沈阳:沈阳大学,2016.
49 程晓暄.土壤中多环芳烃生物降解的差异性及其对源解析参数的影响[D].北京:中国石油大学(北京),2018.
50 沈青.地表水中藻类代谢对pH和含氧量影响分析[J].环境科学与技术201134():261-262.
51 Zhao Y, Wang J.Mechanical sand fixing is more beneficial than chemical sand fixing for artificial cyanobacteria crust colonization and development in a sand desert[J].Applied Soil Ecology2019140:115-120.
52 Couradeau E, Giraldo-Silva A, De Martini F,et al.Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium,Microcoleus vaginatus,and the formation of a nitrogen-fixing cyanosphere[J].Microbiome20197(1):55.
53 Garcia-Pichel F, Wojciechowski M F.The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates[J].PLOS One20094(11):e7801.
54 Cania B, Vestergaard G, Kublik S,et al.Biological soil crusts from different soil substrates harbor distinct bacterial groups with the potential to produce Exopolysaccharides and Lipopolysaccharides [J].Microbial Ecology202079(2):326-341.
55 Yan S, Yang J, Zhou S,et al.Biological soil crusts alleviate the stress of arsenic on rice germination and the underlying immobilization mechanisms[J].Ecotoxicology and Environmental Safety2021227:112839.
56 焦冰洁,徐琳,李香真,等.黄土高原水蚀风蚀交错区固氮微生物群落多样性在生物结皮中的演变规律[J].生态学报202343(23):9662-9673.
57 Wang Z, Liu K, Du Y,et al.Biological soil crusts significantly improve soil fertility and change soil microbiomes in Qinghai-Tibetan alpine grasslands[J].FEMS Microbiology Letters2024371:fnae088.
58 Cai H Y, Yan Z S, Wang A J,et al.Analysis of the attached microbial community on mucilaginous cyanobacterial aggregates in the eutrophic Lake Taihu reveals the importance of Planctomycetes [J].Microbial Ecology201366(1):73-83.
59 Duan Y, Li Y, Zhao J,et al.Changes in microbial composition during the succession of biological soil crusts in alpine hulun buir sandy land,China[J].Microbial Ecology202487(1):43-53.
60 Bethany J, Giraldo-Silva A, Nelson C,et al.Optimizing the production of nursery-based biological soil crusts for restoration of arid land soils[J].Applied and Environmental Microbiology201985(15):e00735.
61 Song H, Peng L, Li Z,et al.Metal distribution and biological diversity of crusts in paddy fields polluted with different levels of cadmium[J].Ecotoxicology and Environmental Safety2019184:109620.
62 Xiao Z, Peng M, Mei Y,et al.Effect of organosilicone and mineral silicon fertilizers on chemical forms of cadmium and lead in soil and their accumulation in rice[J].Environmental Pollution2021283:117107.
63 Mahanty T, Bhattacharjee S, Goswami M,et al.Biofertilizers:a potential approach for sustainable agriculture development[J].Environmental Science and Pollution Research201724(4):3315-3335.
64 Beneduzi A, Ambrosini A, Passaglia L M.Plant growth-promoting rhizobacteria (PGPR):Their potential as antagonists and biocontrol agents[J].Genetics and Molecular Biology201235(4):1044-1051.
65 Stirk W A, Bálint P, Tarkowská D,et al.Hormone profiles in microalgae:gibberellins and brassinosteroids[J].Plant Physiology and Biochemistry201370:348-353.
66 Farid R, Mutale-Joan C, Redouane B,et al.Effect of microalgae polysaccharides on biochemical and metabolomics pathways related to plant defense in Solanum lycopersicum [J].Applied Biochemistry and Biotechnology2019188(1):225-240.
67 Geries L S M, Elsadany A Y.Maximizing growth and productivity of onion (Allium cepa L.) by Spirulina platensis extract and nitrogen-fixing endophyte Pseudomonas stutzeri [J].Archives of Microbiology2021203(1):169-181.
68 Kang Y, Kim M, Shim C,et al.Potential of algae-bacteria synergistic effects on vegetable production[J].Frontiers in Plant Science202112:656662.
69 Bhatt P, Brown P B, Huang J Y,et al.Algae and indigenous bacteria consortium in treatment of shrimp wastewater:a study for resource recovery in sustainable aquaculture system[J].Environmental Research2024250:118447.
70 Huang H, Liu X, Lang Y,et al.Breaking barriers:bacterial-microalgae symbiotic systems as a probiotic delivery system[J].Journal of Nanobiotechnology202422(1):371-379.
71 Wang Y, Zhou P, Zhou W,et al.Network analysis indicates microbial assemblage differences in life stages of Cladophora [J].Applied and Environmental Microbiology202389(3):e0211222.
72 赵晨冉,李秀辰,张国琛,等.生态净化海水养殖尾水国内外研究进展[J].中南农业科技202243(6):180-184.
73 Gilmour D J.Microalgae for biofuel production[J].Advances in Applied Microbiology2019109:1-30.
74 Yao S, Lyu S, An Y,et al.Microalgae-bacteria symbiosis in microalgal growth and biofuel production:a review[J].Journal of Applied Microbiology2019126(2):359-368.
75 Fu B, Liu Y, Meadows M E.Ecological restoration for sustainable development in China[J].National Science Review202310(7):nwad033.
76 Prézelin B B, Alberte R S.Photosynthetic characteristics and organization of chlorophyll in marine dinoflagellates[J].Proceedings of the National Academy of Sciences of the United States of America197875(4):1801-1804.
77 Liu G, Sun J, Xie P,et al.Mechanism of bacterial communities regulating litter decomposition under climate warming in temperate wetlands[J].Environmental Science and Pollution Research202330(21):60663-60677.
78 Nowruzi B, Shishir M A, Porzani S J,et al.Exploring the interactions between algae and bacteria[J].Mini-Reviews in Medicinal Chemistry202222(20):2596-2607.
79 Cao W, Xiong Y, Zhao D,et al.Bryophytes and the symbiotic microorganisms,the pioneers of vegetation restoration in karst rocky desertification areas in southwestern China[J].Applied Microbiology and Biotechnology2020104(2):873-891.
80 Wang C, Yu W, Ma L,et al.Biotic and abiotic drivers of ecosystem multifunctionality:evidence from the semi-arid grasslands of northern China[J].Science of the Total Environment2023887:164158.
81 Schramma N, Canales G C, Jalaal M.Light-regulated chloroplast morphodynamics in a single-celled dinoflagellate[J].Proceedings of the National Academy of Sciences of the United States of America2024121(47):e2411725121.
82 Ten Veldhuis M C, Ananyev G, Dismukes G C.Symbiosis extended:exchange of photosynthetic O2 and fungal-respired CO2 mutually power metabolism of lichen symbionts[J].Photosynthesis Research2020143(3):287-299.
83 郝凯旋,陈文兵,母锐敏,等.菌藻系统对废水中氮磷去除规律的研究[J].山东建筑大学学报201934(5):50-54.
84 Gatheru Waigi M, Sun K, Gao Y.Sphingomonads in microbe-assisted phytoremediation:tackling soil pollution[J].Trends in Biotechnology201735(9):883-899.
85 Krug L, Morauf C, Donat C,et al.Plant growth-promoting methylobacteria selectively increase the biomass of biotechnologically relevant microalgae[J].Frontiers in Microbiology202011:427-436.
86 Liu X, Zuo Z, Xie X,et al.SLC24A-mediated calcium exchange as an indispensable component of the diatom cell density-driven signaling pathway[J].The International Society for Microbial Ecology202418(1):wrae039.
87 Zhang H, Yan Q, An Z,et al.A revolving algae biofilm based photosynthetic microbial fuel cell for simultaneous energy recovery,pollutants removal,and algae production[J].Frontiers in Microbiology202213:990807.
88 Sahu S, Kaur A, Singh G,et al.Integrating biosorption and machine learning for efficient remazol red removal by algae-bacteria co-culture and comparative analysis of predicted models[J].Chemosphere2024355:141791.
89 贾毅立,李洋,范琳.我国北方沙化土地综合治理对策[J].林业科技通讯2024(9):46-49.
90 Mackelprang R, Vaishampayan P, Fisher K.Adaptation to environmental extremes structures functional traits in biological soil crust and hypolithic microbial communities[J].mSystems20227(4):e0141921.
Outlines

/