小波包分解与多个机器学习模型耦合在风速预报中的对比
王同亮, 马绍休, 高扬, 宫毓来, 安志山

The hybrid of wavelet packet decomposition and machine learning models in wind speed forecasting
Tongliang Wang, Shaoxiu Ma, Yang Gao, Yulai Gong, Zhishan An
表3 模型预报结果拟合程度(R2
Table 3 Fitting degree of model forecast results (R2)
模型戈壁绿洲沙漠
单一XXX模型WPD-XXX混合模型WPD-XXX-CNN模型单一XXX模型WPD-XXX混合模型WPD-XXX-CNN模型单一XXX模型WPD-XXX混合模型WPD-XXX-CNN模型
SVR0.84680.95200.96070.86820.93220.94590.15320.55060.5952
RF0.83560.97060.98030.84600.97630.98460.37400.88270.8989
GBR0.83110.96740.97260.82210.98240.98660.32430.87980.8935
ANN0.84910.97000.97140.86920.98410.98340.53600.93720.9261
ELM0.83290.99220.99430.87620.99670.99530.52760.97920.9754
CNN0.82870.95710.95710.88640.99190.99190.49160.93490.9349
LSTM0.86940.97250.97530.88520.97990.97880.56780.93690.9345
SLSTM0.85330.96980.96600.87970.98620.98580.43600.97190.9588
BLSTM0.86550.96410.96230.89240.98490.98730.53900.89500.9105
GRU0.86270.98700.98880.89020.99180.99110.56740.94960.9449
CLCTM0.85680.99310.99420.87190.99210.99230.45570.93080.9315
CGRU0.85790.99330.99310.87960.99220.99140.45340.94610.9433
A30.87040.99530.99420.89230.99530.99450.58370.97140.9633
A120.86930.98960.98910.88910.99370.99320.50470.93110.9289