小波包分解与多个机器学习模型耦合在风速预报中的对比
|
王同亮, 马绍休, 高扬, 宫毓来, 安志山
|
The hybrid of wavelet packet decomposition and machine learning models in wind speed forecasting
|
Tongliang Wang, Shaoxiu Ma, Yang Gao, Yulai Gong, Zhishan An
|
|
表3 模型预报结果拟合程度(R2)
|
Table 3 Fitting degree of model forecast results (R2)
|
|
模型 | 戈壁 | 绿洲 | 沙漠 |
---|
单一XXX模型 | WPD-XXX混合模型 | WPD-XXX-CNN模型 | 单一XXX模型 | WPD-XXX混合模型 | WPD-XXX-CNN模型 | 单一XXX模型 | WPD-XXX混合模型 | WPD-XXX-CNN模型 |
---|
SVR | 0.8468 | 0.9520 | 0.9607 | 0.8682 | 0.9322 | 0.9459 | 0.1532 | 0.5506 | 0.5952 | RF | 0.8356 | 0.9706 | 0.9803 | 0.8460 | 0.9763 | 0.9846 | 0.3740 | 0.8827 | 0.8989 | GBR | 0.8311 | 0.9674 | 0.9726 | 0.8221 | 0.9824 | 0.9866 | 0.3243 | 0.8798 | 0.8935 | ANN | 0.8491 | 0.9700 | 0.9714 | 0.8692 | 0.9841 | 0.9834 | 0.5360 | 0.9372 | 0.9261 | ELM | 0.8329 | 0.9922 | 0.9943 | 0.8762 | 0.9967 | 0.9953 | 0.5276 | 0.9792 | 0.9754 | CNN | 0.8287 | 0.9571 | 0.9571 | 0.8864 | 0.9919 | 0.9919 | 0.4916 | 0.9349 | 0.9349 | LSTM | 0.8694 | 0.9725 | 0.9753 | 0.8852 | 0.9799 | 0.9788 | 0.5678 | 0.9369 | 0.9345 | SLSTM | 0.8533 | 0.9698 | 0.9660 | 0.8797 | 0.9862 | 0.9858 | 0.4360 | 0.9719 | 0.9588 | BLSTM | 0.8655 | 0.9641 | 0.9623 | 0.8924 | 0.9849 | 0.9873 | 0.5390 | 0.8950 | 0.9105 | GRU | 0.8627 | 0.9870 | 0.9888 | 0.8902 | 0.9918 | 0.9911 | 0.5674 | 0.9496 | 0.9449 | CLCTM | 0.8568 | 0.9931 | 0.9942 | 0.8719 | 0.9921 | 0.9923 | 0.4557 | 0.9308 | 0.9315 | CGRU | 0.8579 | 0.9933 | 0.9931 | 0.8796 | 0.9922 | 0.9914 | 0.4534 | 0.9461 | 0.9433 | A3 | 0.8704 | 0.9953 | 0.9942 | 0.8923 | 0.9953 | 0.9945 | 0.5837 | 0.9714 | 0.9633 | A12 | 0.8693 | 0.9896 | 0.9891 | 0.8891 | 0.9937 | 0.9932 | 0.5047 | 0.9311 | 0.9289 |
|
|
|