以霜冰优化算法优化CNN-BiLSTM-Attention的参考蒸散量估算
|
付桐林, 金晶
|
Estimating reference evapotranspiration using CNN-BiLSTM-Attention enhanced by RIME optimization algorithm
|
Tonglin Fu, Jing Jin
|
|
表2 各模型在测试阶段的性能评价指标
|
Table 2 The performance metrics of each model in testing stage
|
|
模型 | NSCE | MSE | RMSE | MAE | MAPE/% | R2 |
---|
RIME- CNN-BiLSTM-Attention | 0.8830 | 0.2879 | 0.5366 | 0.4013 | 14.09 | 0.8930 | OOA- CNN-BiLSTM-Attention | 0.8816 | 0.3249 | 0.5700 | 0.4349 | 14.34 | 0.8816 | NGO- CNN-BiLSTM-Attention | 0.8796 | 0.3303 | 0.5747 | 0.4352 | 14.28 | 0.8796 | HHO- CNN-BiLSTM-Attention | 0.8769 | 0.3378 | 0.5812 | 0.4482 | 14.38 | 0.8769 | CNN-BiLSTM-Attention | 0.8754 | 0.3548 | 0.5957 | 0.4761 | 14.56 | 0.8654 |
|
|
|