img

官方微信

高级检索

中国沙漠, 2025, 45(4): 57-66 doi: 10.7522/j.issn.1000-694X.2025.00187

极端干旱对草地生态系统生物多样性与生态系统多功能性的影响研究综述

黄文达,1,2, 史尚彬1,2, 于海伦1, 朱远忠1,2

1.中国科学院西北生态环境资源研究院 奈曼沙漠化研究站/干旱区生态安全与可持续发展全国重点实验室,甘肃 兰州 730000

2.中国科学院大学,北京 100049

Impacts of extreme drought on biodiversity and ecosystem multifunctionality in grassland: a review

Huang Wenda,1,2, Shi Shangbin1,2, Yu Hailun1, Zhu Yuanzhong1,2

1.Naiman Desertification Research Station / State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Science,Lanzhou 730000,China

2.University of Chinese Academy of Sciences,Beijing 100049,China

收稿日期: 2025-06-09   修回日期: 2025-07-08  

基金资助: 干旱区生态安全与可持续发展全国重点实验室运行费项目.  E451890201
国家自然科学基金项目.  41971144

Received: 2025-06-09   Revised: 2025-07-08  

作者简介 About authors

黄文达(1980—),女,甘肃平川人,博士,副研究员,主要从事干旱区恢复生态学研究E-mail:huangwenda2008@163.com , E-mail:huangwenda2008@163.com

摘要

生物多样性与生态系统功能的作用关系一直是生态系统生态学研究的前沿热点问题。气候变化特别是极端降水事件的频发,是诱发生态系统组成、结构和功能变化的主要驱动力,而在这改变过程中生物多样性的差异及对生态系统多功能性的调控机理尚未清晰地认知。为了深入探究极端干旱对草地生态系统生物多样性与生态系统多功能性及其关系的影响机理,本研究系统介绍了极端干旱对草地生态系统植物多样性、土壤生物多样性、植物-土壤多功能性的影响,分析和总结了气候变化影响不同生态系统、群落类型、尺度范围(全球尺度、区域尺度、局地尺度)内生物多样性、生态系统多功能性及其作用关系的研究成果,并总结分析了存在的主要问题,最后对未来的主要研究方向做了展望。

关键词: 草地生态系统 ; 生物多样性 ; 生态系统多功能性 ; 极端干旱

Abstract

The relationship between biodiversity and ecosystem function (BEF) has always been a hot topic in ecosystem ecology. Climate change, especially the frequent occurrence of extreme precipitation events, is the main driving force to induce changes in ecosystem composition, structure and function. However, the differences of biodiversity and the regulatory mechanism of ecosystem multifunctionality in this process of have not been clearly understood. To explore the underlying mechanisms of how extreme drought influences biodiversity and ecosystem multifunctionality and their interactions in grassland ecosystems. This study systematically examines the impacts of extreme drought on plant diversity, soil biodiversity, and plant-soil multifunctionality in grassland ecosystem. It synthesizes and analyzes research findings concerning how climate change affects biodiversity, ecosystem multifunctionality, and their interrelationships across different ecosystems, community types, and spatial scales (global, regional, and local). Key existing challenges in current research are critically evaluated. Finally, future research directions are proposed and discussed.

Keywords: grassland ecosystem ; biodiversity ; ecosystem multifunctionality ; extreme drought

PDF (798KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黄文达, 史尚彬, 于海伦, 朱远忠. 极端干旱对草地生态系统生物多样性与生态系统多功能性的影响研究综述. 中国沙漠[J], 2025, 45(4): 57-66 doi:10.7522/j.issn.1000-694X.2025.00187

Huang Wenda, Shi Shangbin, Yu Hailun, Zhu Yuanzhong. Impacts of extreme drought on biodiversity and ecosystem multifunctionality in grassland: a review. Journal of Desert Research[J], 2025, 45(4): 57-66 doi:10.7522/j.issn.1000-694X.2025.00187

0 引言

在全球气候变暖的背景下,干旱、半干旱地区极端气候事件发生的频率、强度和持续时间将会显著增加1-2,使得更多地区的人类遭遇严重的生存危机。联合国政府间气候变化专门委员会(IPCC)的评估报告指出,全球增温4 ℃水平下,人类50%的居住区域将面临农业生态干旱的威胁,尤其是降水量分布频次低于10%的极端干旱事件将对中国北方生态脆弱区造成尤为深远的影响3。未来20年,中国大部分区域干旱出现的频率和强度将逐渐增多4。因此,频繁出现的极端干旱将会对经济社会发展、粮食生产、生态环境及人民生命财产安全等造成严重威胁。极端气候事件时空变化及其驱动因素研究已成为国内外学者关注的热点问题5-6

生物多样性和生态系统功能的关系研究是当前备受生态学关注的热点7-10。近年来,生态学家利用植物、动物、微生物开展了大量的野外观察、人工调控及理论模型研究,进一步验证了生物多样性与生态系统功能关系的相关假说11-13。目前,在全球变化大背景下,降水的季节分配及降水模式的改变使得区域水分循环的关键过程发生改变14,进而对生态系统的生物多样性1215-16、生产力17-18、碳氮循环19、土壤微生物群落组成20等生态系统功能产生深远影响。经验证据表明,频繁的极端干旱事件可以导致群落中关键物种或常见物种重新排序、诱导优势物种发生变化、驱动向新的生态系统类型的转变21,未来愈加严重的水文干旱也将导致脆弱生态系统碳汇功能降低1。极端干旱不仅会影响生物多样性和生态系统多功能性,还可调节生物多样性与生态系统多功能性之间的关系222。因此,厘清生物多样性与生态系统多功能性的作用关系不仅具有重大的科学意义,也可以为生态系统管理和保护提供重要的理论指导。

1 生物多样性与生态系统多功能性关系

面对全球物种灭绝加快,针对生物多样性与生态系统多功能性关系的相关研究已经广泛开展,并总结出了许多假说和量化方法,例如“质量比假说”“阈值法”“平均值法”等。气候变化尤其是降水模式变化会改变植物和土壤微生物群落多样性与生态功能的耦合关系1623,降水可通过改变土壤理化性质等对生态系统多功能性产生直接的负效应19,也可通过改变生物多样性,尤其是植物-土壤微生物多样性来间接调控生态系统多功能性1224。探究全球变化背景下生物多样性与生态系统多功能性作用关系及机理对生物多样性保护和生态系统功能评估有重要意义。

1.1 植物多样性与生态系统多功能性的关系

不同维度植物多样性(物种多样性、功能多样性、遗传多样性及其相互作用)与生态系统多功能性都呈现显著的作用关系1625。例如功能多样性对单个生态系统功能和生态系统多功能性变异具有很高的解释度和关联性16,能有效驱动陆地生态系统多功能性26-28;系统发育多样性与旱地生态系统多功能性以及单个碳、氮循环功能正相关29;遗传多样性增加会改变群落生产力30-31;沙质草地生态系统小叶锦鸡儿(Caragana microphylla)遗传多样性与土壤有效磷含量显著正相关32;阿拉善高原灌木种多度与土壤有机质、全氮含量显著正相关33。物种丰富度和植物功能多样性是调控草地和旱地生态系统多功能性的重要指标1634。个体大小(植株高度或侧向扩展)和叶片属性(叶片干物质含量和比叶面积)等植物性状是驱动高寒草甸生态系统35、内蒙古草原生态系统19和地中海地区旱地生态系统36多功能性响应干旱的主要因素。物种丰富度、均匀度等植物多样性指数与稀树草原37、典型草原生态系统多功能性之间的关系均具有尺度依赖性31。内蒙古草原植物物种多样性、功能多样性和系统发育多样性在α和β尺度上均与生态系统多功能性呈显著正相关19。内蒙古中东部典型草原物种多样性和系统发育多样性与土壤多功能性呈负相关关系17。植物丰富度(α多样性)对沙质草地生态系统31、荒漠草原生态系统38、草原生态系统39单个生态系统功能和生态系统多功能性均有显著的正效应,而群落多样性(β多样性)和大尺度生物多样性(γ多样性)仅对生态系统多功能性具有显著的正作用40。除地上部分外,植物根系的功能性状,如比根长、分枝比、真菌侵染率等,也会通过调控植物根系的生长及养分的吸收,影响生态系统的物质循环和能量流动,对草地生态系统多功能性维持具有重要的作用1241

1.2 土壤动物多样性与生态系统多功能性的关系

土壤动物通过功能互补、网络缓冲和动态反馈三重机制,深度参与物质循环、能量流动、生境调控等核心生态过程,而其多样性特征直接决定草地生态系统多功能性的表达效率。在生物地球化学层面,土壤动物多样化的功能群生态位与土壤元素周转效率显著正相关。微生物捕食性线虫通过口器分化调节细菌与真菌群落多样性,进而与土壤碳氮分解、矿化等形成正向作用关系42-43,食腐动物类(如蚯蚓)构建生物孔隙网络能显著提升土壤通气性与导水能力,进而与土壤氮素转化显著正相关44-45,中小型土壤动物(如螨类和跳虫)会加快木质素和纤维素的降解速率,且当物种丰富度超过阈值时,其多样性与碳固存呈非线性相关关系46,而且耐旱弹尾虫在干旱期可补偿螨类的分解功能,使得刈割后草地土壤动物多样性与植物生产力显著正相关47。在生态网络维度上,由植物-土壤动物-微生物构成的互作关系网络48-49对生态系统多功能性的协同效应远超单一营养级,尤其在干旱区草地中,土壤动物功能多样性与生态系统多功能性的正向作用关系能增强生态系统的抵抗力和恢复力50-52。与此同时,生态系统多功能性既是土壤动物功能的体现,也是维持其多样性的基础。一旦生态系统多功能性受损,环境因子变化会通过生物网络级联效应威胁整体多样性,比如调节功能(如气候调节、土壤稳定性维持)的破坏会降低微生物网络复杂性,引发线虫-螨类营养耦合效率锐减,使得动物多样性与生态系统多功能性呈负相关关系49;供应功能(如食物与栖息地供给)缺失将导致土壤动物多样性降低53;循环功能(如营养周转)效率的降低造成干旱草原等敏感区域中小型动物物种丰度下降,使得动物多样性与生态功能呈直接负相关。这些过程凸显了土壤动物多样性通过多维度功能服务维系生态系统多功能性的核心作用。

1.3 土壤微生物多样性与生态系统多功能性的关系

土壤微生物多样性在维持土壤健康、提供多种功能和服务方面发挥着重要作用24,比如土壤微生物能够驱动陆地生态系统初级生产力、有机质分解和养分循环等生态系统多功能性112054。不同生态系统土壤微生物多样性与生态系统多功能性之间相关关系存在差异1155-56,土壤细菌、真菌和古菌群落在驱动生态多功能性方面发挥着关键作用2257。例如山地生态系统、高寒草地、喀斯特生态修复区土壤细菌群落α多样性与土壤生态多功能性显著正相关5658-59。有报道指出,土壤微生物多样性改变了退化植被修复过程中生态系统多功能性,比如土壤真菌群落多样性显著提高了矿山植被修复过程中土壤多功能性57;细菌群落多样性提升了红树林恢复过程中土壤多功能性60;不同退化程度高寒草地土壤Shannon指数和Simpson指数制约了土壤脲酶活性、降低了土壤微生物量氮含量61、增加了植物生物量,使得土壤微生物多样性与植物地上-地下生物量正相关62、并间接驱动生态系统多功能性55。不同草地类型土壤细菌多样性与生态系统多功能性关系存在差异,比如在典型草原二者显著负相关,而在高寒草地显著正相关56。全球变化背景下,土壤微生物群落对降水的反应主要通过产生更小、更脆弱的微生物量碳库,从而增强了土壤异养呼吸活性63,进而影响生态系统多功能性64。例如干旱会降低典型草原细菌和真菌多样性,进而改变生态系统功能指标64;生长季干旱时林地和草地土壤细菌群落组成对生态多功能性具有直接的显著正向影响,极端干旱时则表现为土壤真菌群落占主导地位65。土壤理化性质与细菌、真菌群落组成和多样性也有显著相关性3155-66,例如土壤理化性质是降雨模式变化过程中土壤微生物群落改变的资源影响因素67;土壤全磷是调控人工林地土壤微生物群落结构的主要因素68

2 极端干旱对生物多样性和生态系统多功能性的影响

极端干旱作为全球气候变化背景下频繁出现的极端气候事件,对草地生态系统产生了深远影响,其对不同维度生物多样性与草地生态系统多功能性之间关系的调控机制备受关注(图1)。极端干旱通常会引起土壤含水量下降、土壤酸化、改变土壤结构,因此而降低植物、动物和微生物的物种丰富度、功能多样性,导致遗传多样性和生态功能丧失。极端干旱同样也会直接调控不同维度生物多样性与生态系统多功能性的耦合关系,引发生物多样性-多功能性关系的非线性转变。

图1

图1   极端干旱对生物多样性与生态系统多功能性关系的影响

Fig.1   Effects of extreme drought on biodiversity-ecosystem multifunctionality relationships


2.1 对植物多样性的影响

极端降水事件通过创造“入侵窗口”,增加外来物种入侵群落的可能性,导致群落组成和结构发生明显变化69。但由于降水模式、群落类型、生态系统类型等不同,植物物种多样性、功能多样性和遗传多样性均呈现不同的响应方式。如长期极端干旱降低了原生草地、灌木丛和灌-草丛的物种丰富度70;显著降低了非洲大草原和沙质草地物种优势度和多样性71-72;促使草原优势种发生更替、群落结构单一化71。生长季极端干旱和生长中期干旱降低了荒漠草原群落的物种多样性指数和丰富度指数73。生长季降水量和降水格局显著影响了中国新疆和吉尔吉斯斯坦鸭茅(Dactylis glomerata)种群的遗传多样性74;与维管植物期望杂合度、观测杂合度相关性最高75;对内蒙古短花针茅(Stipa breviflora76、金发草(Pogonatherum paniceum77和差不嘎蒿(Artemisia halodendron78遗传多样性没有显著影响。极端降水变化对不同生活型植物的叶功能性状影响趋势不同79;显著提高了荒漠草原的优势物种比叶面积、叶氮、叶磷和叶干物质含量80。极端干旱发生时,植物通过调整比根长和叶片、根系养分含量来提高水分和养分的吸收能力,保障根系生长的物质来源81

2.2 对土壤动物多样性的影响

极端干旱通过改变土壤物理化学环境、植被结构和微生物群落,直接或间接影响土壤动物群落的组成、丰度及分布。在类群多样性方面,土壤线虫作为依赖于水进行生命活动的动物82受极端干旱影响极大,虽然线虫会进入无水生物状态停止活动83以适应干旱环境,但干旱带来的土壤盐浓度上升、有害离子增多会促进线虫群落的死亡84;螨类随着干旱程度增加,多样性指数与丰富度指数显著下降,群落结构存在明显差异85,类群密度也呈下降趋势,并且干旱情况下降水后类群丰富度的增长困难86。蚂蚁和甲虫有较强的干旱区生存能力,但极端干旱带来的植被盖度、多样性和丰富度的变化会影响它们的活动87,主要表现在随着高等植物分布减少而迁移,这些动物栖息地在极端环境中分布不均,集中在植物附近的“资源岛”88。随着干旱加剧,喜湿类群(如蚯蚓、线虫)数量锐减,而耐旱节肢动物(如拟步甲科甲虫)相对丰度上升。在功能多样性方面,腐食性动物由于凋落物分解率下降,碳周转减缓89,捕食性动物由于初级生产量小,限制了营养金字塔的基础90,丰度都显著降低。对于植食性昆虫群落结构会随着植物应对极端干旱的策略改变而改变,干旱下植物汁液会积累更多可溶性糖以及含氮营养化合物,有利于吸汁昆虫,但更严重的干旱导致植物化学防御的加强,会限制吸汁昆虫的增长91。叶片在干旱下会提高细胞外壁厚度,加强角质层92,降低食叶昆虫的适口性93,以及化感作用增强,对于这些昆虫来说营养物质增多不足以弥补压力带来的损失,水分胁迫对食叶昆虫造成负面影响,不过干旱后湿润降水促进的新嫩枝叶长出也会有利于食叶昆虫繁荣94。食根昆虫中不适应土壤干旱的属将退出竞争,而水分需求较低的属将能够利用植物向根部分配更多养分、温度升高和捕食者更少的优势,成为优势物种8995

2.3 对土壤微生物多样性的影响

降雨模式变化首先会改变土壤含水量96和土壤净氮矿化速率97,影响枯落物和细根分解98,进而调整微生物群落结构、有机物分解和养分循环过程99,最终制约土壤微生物多样性64。区域尺度上的土壤微生物群落组成以及细菌、真菌、古菌和线虫等不同维度的多样性主要受降水模式和植被类型(荒漠、草甸和草原等)的驱动100-101。例如降雨模式变化对林地和草地土壤微生物群落影响次序为生长季干旱>极端降雨>全年增雨>全年减雨65。极端干旱条件更有利于耐旱性微生物如真菌、厚壁菌、放线菌和革兰氏阴性菌等的生长102-103。长期干旱降低了草地生态系统土壤真菌的丰富度,延滞细菌群落的共现网络104-105;改变了草地土壤真菌和细菌比例9106;降低了中国北方草原干旱和半干旱区土壤线虫丰富度107。生长季干旱提高了林地和草地的土壤细菌α多样性和放线菌门相对丰度,改变了丰富和稀有细菌群落组成65

2.4 对群落生态系统多功能性的影响

降水可以通过改变生物多样性影响生态系统功能12,也可以通过改变土壤性质、植物光合速率、根系分泌物等影响生物量,从而改变生态系统功能19。众所周知生物量是研究生态系统碳收支和碳循环的重要环节。生物量分配反映了地上资源(光和CO2)与地下资源(水和养分)之间的平衡,被广泛用作指示陆地生态系统碳循环对全球变化响应的关键指标。大量野外实地研究和文献综述表明,群落生物量和生产力与极端降水事件具有很强的相关性,例如极端干旱事件使得全球典型草地生产力降低了40%108、中国荒漠草原沙生针茅(S. caucasica)群落地上生物量降低了50%以上73;改变了荒漠生态系统典型植物骆驼刺(Alhagi sparsifolia)的叶磷分配模式38;降低了全世界范围内83个草地C3禾草、C4杂草的生物量109和温带草原生态系统110、半干旱沙质草地111的地上、地下生产力。季节性极端干旱对不同生态系统群落生物量也产生了一定影响,例如生长季初期的春季极端干旱和生长季中期的夏季极端干旱显著降低了温带草原生态系统和草甸草原的地上生物量112-113

干旱除了对群落生物量产生影响外,也会对生态系统碳循环、氮循环等产生不同程度的影响,进而影响生态系统的养分循环和水循环,对生态系统多功能性起关键作用114-115。生长季极端干旱会减弱土壤微生物活动103、降低氮矿化速率111和凋落物生物量的碳氮密度116。极端干旱会显著影响氮素的转化过程117、土壤碳稳定性以及土壤团聚体的碳封存功能56、土壤总碳和总氮含量118,增加贝加尔针茅(S. baicalensis)草原植物叶片碳含量25119。极端干旱也能导致土壤动物功能群重组与效率失衡120:杂食性和腐食性类群减少121,微生物互作网络受损,氮利用率低,养分循环阻滞,结构稳定性下降122。土壤动物群落冗余度降低,抗干扰能力下降,植物病原菌繁殖加速,植物生产力显著降低123。蚂蚁、蚯蚓、千足虫等清道夫数量减少,土壤沉积物、有机质垂直运输的能力变弱124-125

3 存在的问题与展望

综上所述,生物多样性和生态系统多功能性关系研究已成为未来热点方向,科学家们已对此开展了大量研究,但仍存在一些关键问题亟待解决:①相关研究主要在青藏高原、高寒草地和典型草原等草原生态系统,针对生态较为脆弱的风沙区、交错带功能植被的系统性研究较少。②大部分研究局限在探索植物群落生产力、物种多样性或功能多样性对单一生态功能的影响规律,缺乏多维度生物多样性(地上:物种多样性、遗传多样性和功能多样性;地下:土壤动物多样性,土壤细菌、真菌和古菌多样性)协同作用对生态系统多功能性影响机制的深入分析。③许多研究指出极端干旱会显著影响生物多样性和生态系统多功能性,但因生态系统类型(荒漠、草地、高寒草甸生态系统)、群落类型(森林、灌丛、草本群落)和尺度范围(全球尺度、区域尺度、局地尺度)不同其响应方式存在差异,且二者的作用机理不明。

因此,在中国典型脆弱区系统地开展极端干旱条件下功能植被生物多样性、生态系统多功能性的变化特征和稳定维持机制研究显得尤为重要,应厘清降水对二者作用关系的调控机理。研究结果将能科学地预测极端干旱带来的潜在危害,为气候变化大背景下典型脆弱区生态建设和植被管理提供理论支持。

参考文献

IPCC.

Climate Change 2021.The Physical Science Basis.Summary for The Policy Makers,Technical Summary and Frequently Asked Questions

[R].Geneva,SwitzerlandIPCC2021.

[本文引用: 2]

Yu QXu CWu H Het al.

Contrasting drought sensitivity of Eurasian and North American grasslands

[J].Nature,2025639114-118.

[本文引用: 2]

周波涛钱进.

IPCC AR6报告解读:极端天气气候事件变化

[J].气候变化研究进展,2021176):713-718.

[本文引用: 1]

Sun YDing Y H.

A projection of future changes in summer precipitation and monsoon in East Asia

[J].Science China-earth Sciences,201053284-300.

[本文引用: 1]

Nguyen T TNakatsugawa MYamada T Jet al.

Flood inundation assessment in the low-lying river basin considering extreme rainfall impacts and topographic vulnerability

[J].Water,2021137):896.

[本文引用: 1]

Ojara M AYunsheng LBabaousmai Het al.

Trends and zonal variability of extreme rainfall events over East Africa during 1960-2017

[J].Natural Hazards,202110933-61.

[本文引用: 1]

马克平.

生物多样性与生态系统功能的实验研究

[J].生物多样性,2013213):247-248.

[本文引用: 1]

Yuan Z QAli ARuiz-Benito Pet al.

Above-and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient

[J].Journal of Ecology,20201085):2012-2024.

Zhang Y H.

Building a bridge between biodiversity and ecosystem multifunctionality

[J].Global Change Biology,20232916):4456-4458.

[本文引用: 1]

Weiskopf S RIsbell FArce-Plata M Iet al.

Biodiversity loss reduces global terrestrial carbon storage

[J].Nature Communications,2024151):4354.

[本文引用: 1]

Delgado-Baquerizo MGiaramida LReich P Bet al.

Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning

[J].Journal of Ecology,20161044):936-946.

[本文引用: 3]

Fry E LSavage JHall A Let al.

Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland

[J].Ecology,20189910):2260-2271.

[本文引用: 4]

井新贺金生.

生物多样性与生态系统多功能性和多服务性的关系:回顾与展望

[J].植物生态学报,20214510):1094-1111.

[本文引用: 1]

张彬朱建军刘华民.

极端降水和极端干旱事件对草原生态系统的影响

[J].植物生态学报,2014389):1008-1018.

[本文引用: 1]

吴建国.

气候变化对陆地生物多样性影响研究的若干进展

[J].中国工程科学,2008107):60-68.

[本文引用: 1]

Guo HZhou X BTao Yet al.

Precipitation preferences alter the relative importance of herbaceous plant diversity for multifunctionality in the drylands of China

[J].Frontiers in Ecology and Evolution,2023111084949.

[本文引用: 5]

Yang XXu YJiang Met al.

Interpreting the effects of plant species diversity and genotypic diversity within a dominant species on above-and belowground overyielding

[J].Science of the Total Environment,20217863):147505.

[本文引用: 2]

Mou X MLi Y QWang X Yet al.

Plant species richness mediates the responses of microbial necromass carbon accumulation to climate aridity in alpine meadows

[J].Journal of Ecology,20251134):883-895.

[本文引用: 1]

Yan Y ZZhang QBuyantuev Aet al.

Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality

[J].Science of The Total Environment,2020726138529.

[本文引用: 5]

Morriss AMeyer KBohannan B.

Linking microbial communities to ecosystem functions:what we can learn from genotype-phenotype mapping in organisms

[J].Philosophical Transactions of the Royal Society B-Biological Sciences,20203751798):20190244.

[本文引用: 2]

de Dios V RWeltzin J FSun Wet al.

Transitions from grassland to savanna under drought through passive facilitation by grasses

[J].Journal of Vegetation Science,201425937-946.

[本文引用: 1]

Jing XSanders N JShi Yet al.

The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate

[J].Nature Communications,201561):8159.

[本文引用: 2]

Isbell FReich P BTilman Det al.

Nutrient enrichment,biodiversity loss,and consequent declines in ecosystem productivity

[J].Proceedings of the National Academy of Sciences,201311029):11911-11916.

[本文引用: 1]

Scherzinger FSchädler MReitz Tet al.

Sustainable land management enhances ecological and economic multifunctionality under ambient and future climate

[J].Nature Communications,2024154930.

[本文引用: 2]

Luo W TGriffin-Nolan R JMa Wet al.

Plant traits and soil fertility mediate productivity losses under extreme drought in C3 grasslands

[J].Ecology,202110210):e03465.

[本文引用: 2]

Bagousse-Pinguet Y LSoliveres SGross Net al.

Phylogenetic,functional,and taxonomic richness have both positive and negative effects on ecosystem multifunctionality

[J].Proceedings of the National Academy of Sciences,201911617):8419-8424.

[本文引用: 1]

Ouyang SGou M MLei P Fet al.

Plant functional trait diversity and structural diversity co-underpin ecosystem multifunctionality in subtropical forests

[J].Forest Ecosystems,202310100093.

Pichon N ACappelli S LSoliveres Set al.

Nitrogen availability and plant functional composition modify biodiversity-multifunctionality relationships

[J].Ecology Letters,2024271):e14361.

[本文引用: 1]

Hu W GRan J ZDong L Wet al.

Aridity-driven shift in biodiversity-soil multifunctionality relationships

[J].Nature Communications,2021125350.

[本文引用: 1]

Wan N FFu L WDainese Met al.

Plant genetic diversity affects multiple trophic levels and trophic interactions

[J].Nature Communications,2022131):7312.

[本文引用: 1]

Huang W DZhu Y ZYu H Let al.

Biodiversity drives ecosystem multifunctionality in sandy grassland?

[J].Science of the Total Environment,2024925171765.

[本文引用: 4]

Huang W DZhao X YZhao Xet al.

Effects of environmental factors on genetic diversity of Canagana microphylla in Horqin Sandy Land,Northeast China

[J].Ecology and Evolution,2016622):8256-8266.

[本文引用: 1]

李新荣谭会娟何明珠.

阿拉善高原灌木种的丰富度和多度格局对环境因子变化的响应:极端干旱荒漠地区灌木多样性保育的前提

[J].中国科学(D辑:地球科学),2009394):504-515.

[本文引用: 1]

Perkins D MBailey R ADossena Met al.

Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes

[J].Global Change Biology,201521396-406.

[本文引用: 1]

朱文琰王娅琳杨畅.

不同放牧模式对贵南县高寒草甸优势种羊茅叶属性的影响

[J].中国草地学报,2021436):69-75.

[本文引用: 1]

Valencia EMaestre F TLe Bagousse-Pinguet Yet al.

Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands

[J].New Phytologist,20152062):660-671.

[本文引用: 1]

Barry K EPinter G AStrini J Wet al.

A graphical null model for scaling biodiversity-ecosystem functioning relationships

[J].Journal of Ecology,20211093):1549-1560.

[本文引用: 1]

Gao Y JTariq AZeng F Jet al.

Allocation of foliar-P fractions of Alhagi sparsifolia and its relationship with soil-P fractions and soil properties in a hyperarid desert ecosystem

[J].Geoderma,2022407115546.

[本文引用: 2]

张嘉睿段晓洋兰天翔.

植物多样性对土壤有机碳及其稳定性影响的研究进展

[J].植物生态学报,20244811):1393-1405.

[本文引用: 1]

Pasari J RLevi TZavaleta E Set al.

Several scales of biodiversity affect ecosystem multifunctionality

[J].Proceedings of the National Academy of Sciences of the United States of America,201311025):10219-10222.

[本文引用: 1]

Gu XWang T ZLi C H.

Elevated ozone decreases the multifunctionality of belowground

[J].Global Change Biology,2023293):890-908.

[本文引用: 1]

Schmitz O JRaymond P AEstes J Aet al.

Animating the carbon cycle

[J].Ecosystems,2014172):344-359.

[本文引用: 1]

Eisenhauer NHörsch VMoeser Jet al.

Synergistic effects of microbial and animal decomposers on plant and herbivore performance

[J].Basic and Applied Ecology,2010111):23-34.

[本文引用: 1]

Jiang Y BWang JMuhammad Set al.

How do earthworms affect decomposition of residues with different quality apart from fragmentation and incorporation?

[J].Geoderma,201832668-75.

[本文引用: 1]

Stolze KBarnes A DEisenhauer Net al.

Depth-differentiated,multivariate control of biopore number under different land-use practices

[J].Geoderma,2022418115852.

[本文引用: 1]

邵元虎张卫信刘胜杰.

土壤动物多样性及其生态功能

[J].生态学报,20153520):6614-6625.

[本文引用: 1]

Tumolo B BAlberson L KCross W Fet al.

Resource modification by ecosystem engineers generates hotspots of stream community assembly and ecosystem function

[J].Ecology,20231046):e4052.

[本文引用: 1]

朱柏菁薛敬荣夏蓉.

不同土壤线虫功能团对水稻生长及地上部植食者的影响

[J].生物多样性,2019274):409-418.

[本文引用: 1]

Arnott ARiddell GEmmerson Met al.

Upland grassland habitats and agri-environment schemes change soil microarthropod abundance

[J].Journal of Applied Ecology,20215810):2256-2265.

[本文引用: 2]

de Vries F TThébault ELiiri Met al.

Soil food web properties explain ecosystem services across European land use systems

[J].Proceedings of the National Academy of Sciences,201311035):14296-14301.

[本文引用: 1]

李周园叶小洲王少鹏.

生态系统稳定性及其与生物多样性的关系

[J].植物生态学报,20214510):1127-1139.

傅声雷刘满强张卫信.

土壤动物多样性的地理分布及其生态功能研究进展

[J].生物多样性,20223010):150-167.

[本文引用: 1]

Garland GBanerjee SEdlinger Aet al.

A closer look at the functions behind ecosystem multifunctionality:a review

[J].Journal of Ecology,20211092):600-613.

[本文引用: 1]

Wagg CSchlaeppi KBanerjee Set al.

Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning

[J].Nature Communications,2019101):4841.

[本文引用: 1]

Chen W QWang J YChen Xet al.

Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau

[J].Soil Biology and Biochemistry,2022172108766.

[本文引用: 3]

Yang YQiu K YXie Y Zet al.

Geographical,climatic,and soil factors control the altitudinal pattern of rhizosphere microbial diversity and its driving effect on root zone soil multifunctionality in mountain ecosystems

[J].Science of the Total Environment,2023904166932.

[本文引用: 4]

Jin J YZhao D YWang J Pet al.

Fungal community determines soil multifunctionality during vegetation restoration in metallic tailing reservoir

[J].Journal of Hazardous Materials,2024478135438.

[本文引用: 2]

Xue Y FTian JQuine T Aet al.

The persistence of bacterial diversity and ecosystem multifunctionality along a disturbance intensity gradient in karst soil

[J].Science of the Total Environment,2020748142381.

[本文引用: 1]

Cui H WWagg CWang X Tet al.

The loss of above-and belowground biodiversity in degraded grasslands drives the decline of ecosystem multifunctionality

[J].Applied Soil Ecology,2022172104370.

[本文引用: 1]

Hu Z KDelgado-Baquerizo MFanin Net al.

Nutrient-induced acidification modulates soil biodiversity-function relationships

[J].Nature Communications,2024152858.

[本文引用: 1]

尹亚丽王玉琴鲍根生.

退化高寒草甸土壤微生物及酶活性特征

[J].应用生态学报,20172812):3881-3890.

[本文引用: 1]

陈晨颖.

青藏高原高寒草甸土壤生物多样性对土壤生态系统功能的影响

[D].南京南京农业大学2016.

[本文引用: 1]

Pérez Castro SCleland E EWagner Ret al.

Soil microbial responses to drought and exotic plants shift carbon metabolism

[J].The ISME Journal,2019131776-1787.

[本文引用: 1]

Zhai C CHan L LXiong Cet al.

Soil microbial diversity and network complexity drive the ecosystem multifunctionality of temperate grasslands under changing precipitation

[J].Science of the Total Environment,2024906167217.

[本文引用: 3]

郭彦青.

陕西关中地区降雨模式对土壤微生物群落和生态多功能性的影响机制

[D].陕西杨凌西北农林科技大学2021.

[本文引用: 3]

Edlinger ASaghaï AHerzog Cet al.

Towards a multidimensional view of biodiversity and ecosystem functioning in a changing world

[J].New Phytologist,20202283):820-822.

[本文引用: 1]

Na X FYu H LWang Pet al.

Vegetation biomass and soil moisture coregulate bacterial community succession under altered precipitation regimes in a desert steppe in northwestern China

[J].Soil Biology and Biochemistry,2019136107520.

[本文引用: 1]

陈湘淋沈燕黄怡.

樟树和马尾松人工林土壤酶活性和微生物群落对干季和湿季的响应

[J].中南林业科技大学学报,2022427):114-126.

[本文引用: 1]

Diez J MD'Antonio C MDukes J Set al.

Will extreme climatic events facilitate biological invasions?

[J].Frontiers in Ecology and the Environment,2012105):249-257.

[本文引用: 1]

Breshears D DCobb N SRich P Met al.

Regional vegetation die-off in response to global-change-type drought

[J].Proceedings of the National Academy of Sciences of the United States of America,200510242):15144-15148.

[本文引用: 1]

Hoover D LKnapp A KSmith M D.

Resistance and resilience of a grassland ecosystem to climate extremes

[J].Ecology,2014959):2646-2656.

[本文引用: 2]

车力木格刘新平何玉惠.

半干旱沙地草本植物群落特征对短期降水变化的响应

[J].草业学报,2020294):19-28.

[本文引用: 1]

张蕊赵学勇王少昆.

极端干旱对荒漠草原群落物种多样性和地上生物量碳氮的影响

[J].生态环境学报,2019284):715-722.

[本文引用: 2]

张成林杨晓鹏赵文达.

鸭茅野生种质遗传多样性的AFLP分析

[J].西北植物学报,2017379):1711-1719.

[本文引用: 1]

Tan J FWan J ZLuo F Let al.

Relationships between genetic diversity of vascular plant species and climate factors

[J].Journal of Resources and Ecology,201896):663-672.

[本文引用: 1]

张庆牛建明董建军.

内蒙古地区短花针茅(Stipa breviflora)种群遗传多样性

[J].生态学报,2008287):3447-3455.

[本文引用: 1]

马丹炜王胜华罗通.

环境因子对岩生植物金发草遗传多样性的影响

[J].中山大学学报(自然科学版),20062):73-77.

[本文引用: 1]

Huang W DZhao X YZhao Xet al.

Relationship between the genetic diversity of Artemisia halodendron and climatic factors

[J].Acta Oecologica,20145597-103.

[本文引用: 1]

张凯侯继华梁冬.

降水梯度对油松天然林内主要植物叶功能性状的影响

[J].中南林业科技大学学报,2016367):48-54.

[本文引用: 1]

郭新新岳平李香云.

降水量对荒漠草原骆驼蓬(Peganum harmala)地上生物量的影响

[J].中国沙漠,2022422):164-172.

[本文引用: 1]

赵广帅刘珉石培礼.

羌塘高原降水梯度植物叶片、根系性状变异和生态适应对策

[J].生态学报,2020401):295-309.

[本文引用: 1]

Treonis A MMarais EMaggs-Kölling G.

Nematode communities indicate diverse soil functioning across a fog gradient in the Namib Desert gravel plains

[J].Ecology and Evolution,2022126):e9013.

[本文引用: 1]

Treonis A MWal D HVirginia R A.

The use of anhydrobiosis by soil nematodes in the Antarctic Dry Valleys

[J].Functional Ecology,2000144):460-467.

[本文引用: 1]

郑成卓李玉强王旭洋.

土地荒漠化及其恢复过程土壤动物生态学研究进展

[J].生态学报,2025453):1059-1069.

[本文引用: 1]

Liu W JYin X MGong Tet al.

Community structure of epilithic moss mites and their response to environmental factors in different grades of rocky desertification habitats

[J].Sustainability,20221422):14860.

[本文引用: 1]

刘继亮李锋瑞赵文智.

干旱荒漠螨类和跳虫对降雨的响应

[J].中国沙漠,2017373):439-445.

[本文引用: 1]

Boulay RAron SCerdá Xet al.

Social life in arid environments:the case study of Cataglyphis ants

[J].Annual Review of Entomology,201762305-321.

[本文引用: 1]

Wall D HVirginia R A.

Controls on soil biodiversity:insights from extreme environments

[J].Applied Soil Ecology,1999132):137-150.

[本文引用: 1]

Stevnbak KMaraldo KGeorgieva Set al.

Suppression of soil decomposers and promotion of long-lived,root herbivorous nematodes by climate change

[J].European Journal of Soil Biology,2012521-7.

[本文引用: 2]

Vandegehuchte M LSylvain Z AReichmann L Get al.

Responses of a desert nematode community to changes in water availability

[J].Ecosphere,201563):44.

[本文引用: 1]

Huberty A FDenno R F.

Plant water stress and its consequences for herbivorous insects:a new synthesis

[J].Ecology,2004855):1383-1398.

[本文引用: 1]

周智彬李培军.

我国旱生植物的形态解剖学研究

[J].干旱区研究,20022):35-40.

[本文引用: 1]

Gardarin AGarnier ÉCarrère Pet al.

Plant trait-digestibility relationships across management and climate gradients in permanent grasslands

[J].Journal of Applied Ecology,2014515):1207-1217.

[本文引用: 1]

Gely CLaurance S G WStork N E.

How do herbivorous insects respond to drought stress in trees?

[J].Biological Reviews,2020952):434-448.

[本文引用: 1]

Griffiths BNeilson RBengough A G.

Soil factors determined nematode community composition in a two year pot experiment

[J].Nematology,200356):889-897.

[本文引用: 1]

付光亚.

生长季不同时期降雨变化对土壤微生物群落结构和异养呼吸的影响

[D].河南开封河南大学2022.

[本文引用: 1]

杨阳章妮蒋莉莉.

青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应

[J].草地学报,2021295):1043-1052.

[本文引用: 1]

Wu Q QYue KWang X Cet al.

Differential responses of litter decomposition to warming,elevated CO2,and changed precipitation regime

[J].Plant and Soil,2020455155-169.

[本文引用: 1]

Fromin NShihan ASantonja Met al.

Soil microbial activity in a Mediterranean garrigue responds more to changing shrub community than to reduced rainfall

[J].Plant and Soil,20204491/2):405-421.

[本文引用: 1]

Mureva AWard D.

Soil microbial biomass and functional diversity in shrub-encroached grasslands along a precipitation gradient

[J].Pedobiologia,20176337-45.

[本文引用: 1]

薛凯张彪周姝彤.

青藏高原高寒草地土壤微生物群落及影响因子

[J].科学通报,20196427):2915-2927.

[本文引用: 1]

Gray S BClassen A TKardol Pet al.

Multiple climate change factors interact to alter soil microbial community structure in an old-field ecosystem

[J].Soil Science Society of America Journal,2011756):2217-2226.

[本文引用: 1]

Duan Y LWang X YWang L Let al.

Biogeographic patterns of soil microbe communities in the deserts of the Hexi Corridor,northern China

[J].Catena,2022211106026.

[本文引用: 2]

Sayer E JOliver A EFridley J Det al.

Links between soil microbial communities and plant traits in a species-rich grassland under long-term climate change

[J].Ecology and Evolution,201773):855-862.

[本文引用: 1]

De Vries F TGriffiths R IBailey Met al.

Soil bacterial networks are less stable under drought than fungal networks

[J].Nature Communications,201893033.

[本文引用: 1]

Sun YChen H Y HJin Let al.

Drought stress induced increase of fungi:bacteria ratio in a poplar plantation

[J].Catena,2020193104607.

[本文引用: 1]

Xiong DWei C ZWubs E R Jet al.

Nonlinear responses of soil nematode community composition to increasing aridity

[J].Global Ecology and Biogeography,2020291):117-126.

[本文引用: 1]

Ning S JYan TLuo W Tet al.

Aridity-dependent resistance but strong resilience of grassland ANPP to naturally occurring precipitation extremes

[J].Journal of Plant Ecology,202417rate084.

[本文引用: 1]

Wilcox K RShi ZGherardi L Aet al.

Asymmetric responses of primary productivity to precipitation extremes:a synthesis of grassland precipitation manipulation experiments

[J].Global Change Biology,20172310):4376-4385.

[本文引用: 1]

Kreyling JDengler JWalter Jet al.

Species richness effects on grassland recovery from drought depend on community productivity in a multisite experiment

[J].Ecology Letters,2017201405-1413.

[本文引用: 1]

Zhang JZuo X AZhao X Yet al.

Effects of rainfall manipulation and nitrogen addition on plant biomass allocation in a semiarid sandy grassland

[J].Scientific Reports,2020109026.

[本文引用: 2]

Meng BShi B KZhong S Zet al.

Drought sensitivity of aboveground productivity in Leymus chinensis meadow steppe depends on drought timing

[J].Oecologia,20191913):685-696.

[本文引用: 1]

Padilla F MMommer Lde Caluwe Het al.

Effects of extreme rainfall events are independent of plant species richness in an experimental grassland community

[J].Oecologia,20191911):177-190.

[本文引用: 1]

朴世龙张新平陈安平.

极端气候事件对陆地生态系统碳循环的影响

[J].中国科学:地球科学,2019499):1321-1334.

[本文引用: 1]

Uribe M D RCoe M TCastanho A D Aet al.

Net loss of biomass predicted for tropical biomes in a changing climate

[J].Nature Climate Change,2023133):274-281.

[本文引用: 1]

Wang R BZhang J GMa Tet al.

Effects of short-term drought,nitrogen application and their interactions on the composition and functional genes of soil microbial communities in alfalfa grassland on the Loess Plateau

[J].Frontiers in Sustainable Food Systems,202371332683.

[本文引用: 1]

Lv PSun S SZhao X Yet al.

Effects of altered precipitation patterns on soil nitrogen transformation in different landscape types during the growing season in northern China

[J].Catena,2023222106813.

[本文引用: 1]

Canarini ACarrillo YMariotte Pet al.

Soil microbial community resistance to drought and links to C stabilization in an Australian grassland

[J].Soil Biology and Biochemistry,2016103171-180.

[本文引用: 1]

周一平张玉革马望.

氮添加和干旱对呼伦贝尔草原5种植物性状的影响

[J].生态环境学报,2020291):41-48.

[本文引用: 1]

Gudka MJonathan DLene Pet al.

Conserving dryland biodiversity:a future vision of sustainable dryland development

[J].Biodiversity,2014152/3):143-147.

[本文引用: 1]

Kuťáková ECesarz SMünzbergová Zet al.

Soil microarthropods alter the outcome of plant-soil feedback experiments

[J].Scientific Reports,201881):11898.

[本文引用: 1]

Morales-Márquez JMeloni F.

Soil fauna and its potential use in the ecological restoration of dryland ecosystems

[J].Restoration Ecology,2022306):e13686.

[本文引用: 1]

Wolters V.

Biodiversity of soil animals and its function

[J].European Journal of Soil Biology,2001374):221-227.

[本文引用: 1]

Xiao LYao K HLi Pet al.

Increased soil aggregate stability is strongly correlated with root and soil properties along a gradient of secondary succession on the Loess Plateau

[J].Ecological Engineering,2020143105671.

[本文引用: 1]

Lavelle PSpain AFonte Set al.

Soil aggregation,ecosystem engineers and the C cycle

[J].Acta Oecologica,2020105103561.

[本文引用: 1]

/