[1] 郭婷婷,邵晓昕.浅析海岸带侵蚀[J].生态环境,2011,31(5):37-39. [2] 罗涛,杨小波,黄云峰,等.中国海岸沙生植被研究进展[J].亚热带植物科学,2008,37(1):70-75. [3] McGuire P E,Dvorak J.High salt-tolerance potential in wheatgrasses[J].Crop Science,1981,21(5):702-705. [4] Zhao K F,Fan H.The Adaptation Mechanism of Halophytes to Saline Habitats[M].Science Press,2005:238-240. [5] Garthwaite A J,Bothmer R,Colmer T D.Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- in the shoots[J].Journal of Experimental Botany,2005,56(419):2365-2378. [6] Tester M,Davenport R.Na+ tolerance and Na+ transport in hight plants[J].Annals of Botany,2003,91,503-527. [7] Glenn E P,Watson M C,O'Leary J W,et al.Comparison of salt tolerance and osmotic adjustment of low-sodium and high-sodium subspecies of the C4 halophyte,Atriplex canescens[J].Plant,Cell and Environment,1992,15(6):711-718. [8] Guan H B,Wang X L,Li N.Control of sodium transport and plant Na+/K+ Homestasis improve salt tolerant[J].Resource Development & Market,2012,28(8):710-713. [9] 张继伟,赵昕,石勇,等.盐胁迫下沙米(Agriophyllum squarrosum)矿质离子吸收与分配特征[J].中国沙漠,2016,36(3):702-707. [10] Zhu Z,Zhang R F,Liu T W,et al.Solute accumulation and osmotic adjustment characteristics of the mangrove Avicenni marina under NaCl-induced salinity stress[J].Botanica Marina,2011,54(3):335-341. [11] 孙丽坤,刘万秋,陈拓,等.柽柳属(Tamarix)植物生境适应机制与资源价值研究进展[J].中国沙漠,2016,36(2):349-356. [12] 贾洪涛,赵可夫.盐胁迫下Na+、K+、Cl-对碱蓬和玉米离子的吸收效应[J].山东师大学报:自然科学版,1998,13(4):437-440. [13] Pan Y,Wu L J,Yu Z L.Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch)[J].Plant Growth Regulation,2006,49(2/3):157-165. [14] Meloni D A,Oliva M A,Martinez C A,et al.Photosynthesis and activity of superoxide dismutase,peroxidase and glutathione reductase in cotton under salt stress[J].Environmental and Experimental Botany,2003,49(1):69-76. [15] 鲁艳,雷加强,曾凡江,等.NaCl处理对多枝柽柳(Tamarix ramosissima)生长及生理的影响[J].中国沙漠,2014,34(6):1509-1515. [16] 石福臣,鲍芳.盐和温度胁迫对外来种互花米草(Spartina alterniflora)生理生态特性的影响[J].生态学报,2007,27(7):2733-2741. [17] 鲍芳,石福臣.互花米草与芦苇耐盐生理特征的比较分析[J].植物研究,2007(4):421-427. [18] 隆小华,刘兆普,郑青松,等.不同浓度海水对菊芋幼苗生长及生理生化特性的影响[J].生态学报,2005,25(8):1881-1889. [19] 周瑞莲,王相文,左进城,等.海岸不同生态断带植物根叶抗逆生理变化与其Na+含量的关系[J].生态学报,2015,35(14):4518-4526. [20] 解卫海,周瑞莲,梁慧敏,等.海岸和内陆沙地砂引草(Messerschmidia sibirica)对自然环境和沙埋处理适应的生理差异[J].中国沙漠,2015,35(6):1538-1548. [21] Luna C,Garcia-Seffino L,Atias C,et al.Oxidative stress indicators as selection tools for salt tolerance[J].Plant Breeding,2000,119(4):341-345. [22] Flowers T J,Troke P F,Yeo A R.The mechanisms of salt tolerance in halophytes[J].Annual Review of Plant Physiology,1977,28:89-121 [23] 潘庆民,韩兴国,白永飞,等.植物非结构性贮藏碳水化合物的生理生态学研究进展[J].植物学通报,2002,19(1):30-38. [24] 郑云普,王贺新,娄鑫,等.木本植物非结构性碳水化合物变化及其影响因子研究进展[J].应用生态学报,2014,25(4):1188-1196. [25] 江志坚,黄小平,张景平.环境胁迫对海草非结构性碳水化合物储存和转移的影响[J].生态学报,2012,32(19):6424-6250. [26] 肖强,郑海雷,陈瑶,等.盐度对互花米草生长及脯氨酸、可溶性糖和蛋白质含量的影响[J].生态学杂志,2005,24(4):373-376. [27] 史建伟,张育平,王孟本,等.植物体内非结构性碳水化合物变化及其影响因素[J].湖北农业科学,2008,47(1):112-115. [28] 张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003:127-133. [29] 王宝山,赵可夫.小麦叶片中Na、K提取方法的比较[J].植物生理学通讯,1995,31(1):50-52. [30] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:118-122,126-137. [31] Kerepesi I,Galiba G.Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings[J].Crop Science,2000,40:482-487. [32] Lattanzi F A,Schnyder H,Thornton B.Defoliation effects on carbon and nitrogen substrate import and tissue-bound efflux in leaf growth zones of grass[J].Plant,Cell and Environment,2004,27:347-356. [33] 卢青.植物耐盐性的分子生物学研究进展[J].生物学杂志,2000,17(4):9-11. [34] 张新春,庄炳昌,李自超.植物耐盐性研究进展[J].玉米科学,2002,10(1):50-56. [35] 刘茹,刘庆华,王奎玲,等.肾叶打碗花营养器官解剖学研究[J].江西农业学报,2009,21(3):64-67. |