Please wait a minute...
img

官方微信

高级检索
中国沙漠  2020, Vol. 40 Issue (6): 233-241    DOI: 10.7522/j.issn.1000-694X.2020.00083
    
河西走廊中部荒漠砾幂特征及其对土壤水分入渗的影响
王德金1,2(), 赵文智1(), 周宏1,2
1.中国科学院西北生态环境资源研究院 临泽内陆河流域研究站/内陆河流域生态水文重点实验室,甘肃 兰州 730000
2.中国科学院大学,北京 100049
Characteristics of desert pavement and its influence on water infiltration in the middle of the Hexi Corridor
Dejin Wang1,2(), Wenzhi Zhao1(), Hong Zhou1,2
1.Linze Inland River Basin Research Station / Key Laboratory of Ecohydrology of Inland River Basin,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
 全文: PDF(4594 KB)   HTML
摘要:

荒漠砾幂由一层紧密堆积的嵌入在泡状细颗粒物质的土层中的碎屑物组成,对稳定荒漠生态系统具有重要作用。基于野外调查和原位土壤入渗试验,分析了河西走廊临泽绿洲北部荒漠砾幂特征及其对土壤入渗的影响。结果表明:(1)荒漠砾幂平均厚度为0.50 cm,平均砾石粒径为4.61 mm,平均砾石覆盖度为52.7%。(2)相比于砾幂下方土壤剖面,砾幂质量含水量较低,仅为0.3%;砾幂砾石含量较高,为41.64%,沿山丘-绿洲方向呈增加趋势;样地表层容重一般大于下层容重。(3)砾幂能够降低土壤水分入渗,砾幂去除后,稳定入渗率将从2.35 mm·min-1增加至3.69 mm·min-1。(4)砾幂稳定入渗率与砾幂厚度、砾幂砾石含量呈极显著负相关,与砾石覆盖度、砾幂质量含水量呈显著正相关,与砾幂砾石粒径呈正相关。

关键词: 荒漠砾幂砾石覆盖层水分入渗盘式入渗仪临泽绿洲    
Abstract:

Desert pavement is a surface layer with closely packed gravel that insets in a thin fine-grained vesicular soil horizon, and is important for the stability of the desert ecosystem. Based on the data of the field investigation and situ soil water infiltration in the northern desert of Linze Oasis in the Hexi Corridor, the characteristics of desert pavement and its influence on water infiltration are analyzed in this study. The results show that: (1) desert pavement is 0.50 cm thick with 4.61 mm size gravel, and its surface gravel coverage average 52.7%. (2) Compared to the soil profile below the desert clast, the mass water content of pavement is lower and 0.3%, but the gravel content of pavement is higher and 41.64%, with the declining trend from hill to oasis. Except for Sample 2, the bulk density in upper soil profile (0-5 cm) with pavement clast is higher than it in lower soil profile (5-50 cm). (3) desert pavement can constrain the water infiltration, the steady-state infiltration increases from 2.35 mm·min-1 to 3.69 mm·min-1 when the pavement clast removed. (4) Steady-state infiltration of desert pavement has a significantly negative correlation with thickness and gravel content of pavement clast, a significantly positive correlation with gravel coverage and mass water content of pavement clast, and a positive correlation with grave size of pavement clast. This study is helpful to understand the hydrologic effect of desert pavement.

Key words: desert pavement    pavement clast    water infiltration    disk permeameter    Linze Oasis
收稿日期: 2020-05-25 出版日期: 2020-12-09
:  S157.9  
基金资助: 国家自然科学重点基金项目(41630861)
通讯作者: 赵文智     E-mail: Wangdj@lzb.ac.cn;zhaowzh@lzb.ac.cn
作者简介: 赵文智(E-mail: zhaowzh@lzb.ac.cn
王德金(1988—),男,甘肃金昌人,博士研究生,研究方向为生态水文。E-mail: Wangdj@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王德金
赵文智
周宏

引用本文:

王德金, 赵文智, 周宏. 河西走廊中部荒漠砾幂特征及其对土壤水分入渗的影响[J]. 中国沙漠, 2020, 40(6): 233-241.

Dejin Wang, Wenzhi Zhao, Hong Zhou. Characteristics of desert pavement and its influence on water infiltration in the middle of the Hexi Corridor. Journal of Desert Research, 2020, 40(6): 233-241.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2020.00083        http://www.desert.ac.cn/CN/Y2020/V40/I6/233

图1  研究区和采样位置
编号地理坐标地表特征植被特征
样地1

39°29′24.95″N

100°10′49.98″E

地表倾斜较小,存在风沙侵蚀和流水痕迹植被覆盖度20%~35%,植被主要包括泡泡刺、红砂、蒙古韭、籽蒿、画眉草、狗尾草等
样地2

39°28′12.45″N

100°09′50.65″E

地表平坦,存在明显风沙侵蚀和流水痕迹,有洪水沟道存在植被覆盖度20%~30%,植被主要包括泡泡刺、灌木亚菊、红砂、籽蒿、画眉草、白茎盐生草等
样地3

39°27′18.06″N

100°09′04.92″E

地表平坦,存在风沙侵蚀,无流水痕迹植被覆盖度15%~30%,植被主要包括泡泡刺、红砂、蒙古韭、籽蒿、画眉草、狗尾草、白茎盐生草、刺沙蓬等
样地4

39°25′10.15″N

100°07′38.40″E

地表平坦,存在风沙侵蚀,无流水痕迹植被覆盖度约10%~20%,植被主要包括泡泡刺、红砂、蒙古韭、骆蹄瓣、籽蒿、画眉草、狗尾草、虎尾草、白茎盐生草等
样地5

39°23′54.95″N

100°07′06.27″E

地表平坦,存在风沙侵蚀和人为干扰痕迹,无流水痕迹植被覆盖度15%~30%,植被主要包括泡泡刺、红砂、籽蒿、画眉草、刺毛碱蓬、白茎盐生草、戈壁针茅、刺沙蓬、芨芨草等
表1  样地位置及地表特征
图2  不同样地的土壤剖面(加入剖面分类)
图3  砾幂的厚度、砾石覆盖度和砾石粒径
指标土层位置样地1样地2样地3样地4样地5
厚度/ cm砾幂0.39±0.030.48±0.010.54±0.020.61±0.030.44±0.03
砾石覆盖度/ %砾幂76.58±5.0547.29±4.4752.86±2.8438.44±6.1648.34±5.33
砾石粒径/ mm砾幂4.63±0.0.195.18±0.254.77±0.274.30±0.194.19±0.22
质量含水量/ %砾幂0.53±0.100.24±0.030.22±0.030.23±0.040.28±0.03
土壤剖面2.16±0.261.74±0.121.62±0.252.30±0.281.88±0.12
砾石含量/ %砾幂30.61±3.4931.37±1.9241.94±2.6849.90±6.6854.37±3.37
土壤剖面18.60±1.9518.40±1.6420.93±1.838.97±1.3015.66±3.18
土壤容重/ (g·cm-3)表层1.73±0.021.58±0.021.76±0.031.69±0.031.80±0.05
下层1.65±0.021.62±0.021.65±0.021.58±0.041.72±0.02
表2  砾幂及其下方土壤剖面的物理参数
图4  砾幂及其下方土壤剖面的质量含水量、砾石含量和容重
样地位置土层
2~2.5 mm2.5~3 mm3~4 mm4~5 mm5~10 mm10~20 mm>20 mm
样地1砾幂8.73±0.236.70±0.2012.82±0.438.31±0.2929.14±1.4027.06±1.587.24±0.96
土壤剖面20.47±0.5314.05±0.3021.50±0.4511.05±0.2021.81±0.508.72±0.312.41±0.21
样地2砾幂8.99±0.287.16±0.2714.45±0.5210.30±0.4535.59±0.8420.95±1.332.56±0.61
土壤剖面19.26±0.4312.24±0.2220.02±0.4510.28±0.2024.29±0.449.38±0.274.53±0.35
样地3砾幂6.70±0.466.29±0.4110.72±0.507.28±0.4134.61±1.2626.27±1.668.13±0.86
土壤剖面14.14±0.2911.52±0.2316.81±0.379.93±0.2125.17±0.5015.38±0.557.04±0.24
样地4砾幂4.11±0.145.46±0.3414.69±1.2110.65±0.8835.89±3.0923.67±2.865.53±0.96
土壤剖面17.27±0.1612.11±0.1118.21±0.199.65±0.1023.48±0.3512.79±0.296.50±0.30
样地5砾幂5.39±0.305.60±0.3413.71±0.7411.01±0.5837.38±1.8421.18±1.795.72±1.35
土壤剖面14.12±0.3710.72±0.2618.19±0.4711.21±0.3330.82±1.2214.05±0.770.89±0.08
平均砾幂6.38±0.146.1±0.1513.32±0.389.67±0.3134.98±0.9923.63±0.875.91±0.44
土壤剖面17.04±0.2012.16±0.1319.00±0.2110.47±0.1125.11±0.3312.01±0.234.21±0.13
表3  砾幂及其下方土壤剖面砾石粒径分级 (%)
图5  砾幂覆盖和砾幂去除两种条件下稳定入渗率变化不同小写字母表示差异显著, P<0.05
指标Pearson相关系数
厚度-0.644**
砾石覆盖度0.361*
砾石粒径0.609
质量含水量0.333*
砾石含量-0.455**
表层容重-0.160
表4  稳定入渗率和砾幂物理性质的相关性
1 Young M H,McDonald E V,Caldwell T G,et al.Hydraulic properties of a desert soil chronosequence in the Mojave Desert,USA[J].Vadose Zone Journal,2004,3(3):956-963.
2 Meadows D G,Young M H,McDonald E V.Influence of relative surface age on hydraulic properties and infiltration on soils associated with desert pavements [J].Catena,2008,72(1):169-178.
3 Laity J.Deserts and Desert Environments [M].New York,USA:Wiley-Blackwell,2008.
4 Matmon A,Simhai O,Amit R,et al.Desert pavement-coated surfaces in extreme deserts present the longest-lived landforms on Earth[J].Geological Society of America Bulletin,2009,121: 688-697.
5 Haff P K.Desert pavement:an environmental canary?[J]. Journal of Geology,2001,109(5):661-668.
6 Pietrasiak N,Drenovskyb R E,Santiago L S,et al.Biogeomorphology of a Mojave Desert landscape:configurations and feedbacks of abiotic and biotic land surfaces during landform evolution[J].Geomorphology,2014,206:23-36.
7 Moharana P C,Raja P.Distribution,forms and spatial variability of desert pavements in arid western Rajasthan[J].Journal of the Geological Society of India,2016,87(4):401-410.
8 Wang X M,Cai D W,Sun J M,et al.Contributions of modern gobi desert to the Badain Jaran Desert and the Chinese Loess Plateau[J].Scientific Reports,2019,9(1):1-4.
9 Lebedeva M P,Golovanov D L,Shishkov V A,et al.Microscopic and tomographic studies for interpreting the genesis of desert varnish and the vesicular horizon of desert soils in Mongolia and the USA[J].Boletín de la Sociedad Geológica Mexicana,2019,71(1):21-42.
10 McAuliffe J R.Soil horizon development and the tempo and modes of vegetation change during the Holocene in a Sonoran Desert Basin,USA [J].Holocene,2019,29(8):1263-1272.
11 Adelsberger K A,Smith J R,McPherron S P,et al.Desert pavement disturbance and artifact taphonomy:a case study from the eastern Libyan Plateau,Egypt [J].Geoarchaeology,2013,28(2):112-130.
12 Knight J,Zerboni A.Formation of desert pavements and the interpretation of lithic-strewn landscapes of the central Sahara[J].Journal of Arid Environments,2018,153:39-51.
13 Matmon A,Dody A,Finkel R.A 300-ky history of sand erosion in the Yamin Plain,Negev Desert,Israel[J].Israel Journal of Earth Sciences,2009,58(1):29-39.
14 Al-Farraj A.Desert pavement development on the lake shorelines of Lake Eyre (South),South Australia [J].Geomorphology,2008,100(1):154-163.
15 Wood Y A,Graham R C,Wells S G.Surface control of desert pavement pedologic process and landscape function,Cima Volcanic field,Mojave Desert,California [J].Catena,2005,59(2):205-230.
16 Dietze M,Kleber A.Contribution of lateral processes to stone pavement formation in deserts inferred from clast orientation patterns [J].Geomorphology,2012,139:172-187.
17 O'Neill T A,Balks M R,López-Martínez J.Visual recovery of desert pavement surfaces following impacts from vehicle and foot traffic in the Ross Sea region of Antarctica [J].Antarctic Science,2013,25(4):514-530.
18 Hamerlynck E P,Mcauliffe J R,Mcdonald E V,et al.Ecological responses of two mojave desert shrubs to soil horizon development and soil water dynamics [J].Ecology,2002,83(3):768-779.
19 Li C,Yin J,Miller J,et al.The role of the clast layer of desert pavement in rainfall-runoff processes[C]//Kansa,USA:World Environmental and Water Resources Congress,2009:6509-6516.
20 Abrahams A D,Parsons A J.Relation between infiltration and stone cover on a semiarid hillslope,southern Arizona[J].Journal of Hydrology,1991,122:49-59.
21 Poesen J,Ingelmo-Sanchez F,Mücher H.The hydrological response of soil surfaces to rainfall as affected by cover and position of rock fragments in the top layer [J].Earth Surface Processes and Landforms,1990,15(7):653-671.
22 马永法,李长安,王秋良,等.江汉平原周老镇钻孔砾石统计及其与长江三峡贯通的关系[J].地质科技情报,2007,26(2):42-46.
23 Philip J R.The theory of infiltration:4.sorptivity and algebraic infiltration equations [J].Soil Science,1957,84(3):257-264.
24 Butler J B,Lane S N,Chandler J H.Automated extraction of grain-size data from gravel surfaces using digital image processing[J].Journal of Hydraulic Research,2001,39(5):519-529.
25 Kaseke K F,Mills A J,Henschel J,et al.The effects of desert pavements (gravel mulch) on soil micro-hydrology[J].Pure and Applied Geophysics,2012,169(5):873-880.
[1] 罗万银;董治宝;钱广强;王洪涛 . 栅栏对颗粒起动风速影响的实验研究[J]. 中国沙漠, 2007, 27(2): 201-205.
[2] 陈士辉, 谢忠奎, 王亚军, 魏兴琥. 砂田西瓜不同粒径砂砾石覆盖的水分效应研究[J]. 中国沙漠, 2005, 25(3): 433-436.