中国沙漠 ›› 2025, Vol. 45 ›› Issue (3): 346-356.DOI: 10.7522/j.issn.1000-694X.2025.00056
姚渭琦1,2(), 张亚峰1(
), 袁川3, 陈晶亮1,2, 霍建强1, 潘颜霞1, 王苗苗4
收稿日期:
2025-04-01
修回日期:
2025-05-07
出版日期:
2025-05-20
发布日期:
2025-06-30
通讯作者:
张亚峰
作者简介:
姚渭琦(2002―),男,甘肃通渭人,硕士研究生,主要从事干旱区生态水文学研究。E-mail: yaoweiqi23@mails.ucas.ac.cn
基金资助:
Weiqi Yao1,2(), Yafeng Zhang1(
), Chuan Yuan3, Jingliang Chen1,2, Jianqiang Huo1, Yanxia Pan1, Miaomiao Wang4
Received:
2025-04-01
Revised:
2025-05-07
Online:
2025-05-20
Published:
2025-06-30
Contact:
Yafeng Zhang
摘要:
树干茎流指被植物冠层拦截的沿主干向下汇集到根区土壤的部分降水,是旱区灌木重要的水分和养分来源。本文以腾格里沙漠东南缘沙坡头地区的优势固沙灌木柠条锦鸡儿(Caragana korshinskii)为研究对象,对其树干茎流进行野外定位观测,量化灌木形态特征对树干茎流产量的影响。结果表明:(1)树干茎流占同期降水比例平均为3.6%;(2)树干茎流率(单位降雨产生的树干茎流量,mL·mm-1)与株高、基径、枝条数、冠层体积、冠层投影面积显著正相关(P<0.05);(3)依据熵权法权重得出影响灌木各分枝树干茎流产量的形态特征参数重要性为基径(0.50)>倾角(0.28)>长度(0.22)。研究结果有助于清晰认知干旱区植被系统-土壤系统水循环过程,为评估植被形态结构参数对树干茎流产量影响提供数据支持和方法参考。
中图分类号:
姚渭琦, 张亚峰, 袁川, 陈晶亮, 霍建强, 潘颜霞, 王苗苗. 柠条锦鸡儿( Caragana korshinskii )形态对树干茎流产量的影响[J]. 中国沙漠, 2025, 45(3): 346-356.
Weiqi Yao, Yafeng Zhang, Chuan Yuan, Jingliang Chen, Jianqiang Huo, Yanxia Pan, Miaomiao Wang. The influence of morphological characteristics of Caragana korshinskii on stemflow production[J]. Journal of Desert Research, 2025, 45(3): 346-356.
图1 研究区位置及柠条锦鸡儿树干茎流观测系统注:基于自然资源部标准地图服务网站标准地图(审图号:GS(2023)2763号)制作,底图边界无修改;Ck_1、Ck_2、Ck_3、Ck_4、Ck_5表示野外试验所选的5株柠条锦鸡儿编号
Fig.1 Study site and the stemflow monitoring system of Caragana korshinskii
形态 参数 | 编号 | ||||
---|---|---|---|---|---|
Ck_1 | Ck_2 | Ck_3 | Ck_4 | Ck_5 | |
株高/m | 2.88 | 2.07 | 2.04 | 1.85 | 1.98 |
冠幅/cm | 308×409 | 199×206 | 180×155 | 247×265 | 178×202 |
基径/mm | 48.48 | 24.48 | 23.45 | 21.25 | 21.09 |
基部面积/m² | 0.129 | 0.122 | 0.062 | 0.034 | 0.032 |
叶面积指数 | 1.07 | 0.86 | 0.55 | 1.07 | 0.62 |
分枝数/个 | 26 | 11 | 13 | 11 | 14 |
冠层投影 面积/m² | 9.89 | 3.22 | 2.19 | 5.14 | 2.82 |
冠层体积/m³ | 9.50 | 2.22 | 1.49 | 3.17 | 1.86 |
表1 试验所选柠条锦鸡儿冠层形态特征参数
Table 1 Morphological metrics of Caragana korshinskii selected for the experiment
形态 参数 | 编号 | ||||
---|---|---|---|---|---|
Ck_1 | Ck_2 | Ck_3 | Ck_4 | Ck_5 | |
株高/m | 2.88 | 2.07 | 2.04 | 1.85 | 1.98 |
冠幅/cm | 308×409 | 199×206 | 180×155 | 247×265 | 178×202 |
基径/mm | 48.48 | 24.48 | 23.45 | 21.25 | 21.09 |
基部面积/m² | 0.129 | 0.122 | 0.062 | 0.034 | 0.032 |
叶面积指数 | 1.07 | 0.86 | 0.55 | 1.07 | 0.62 |
分枝数/个 | 26 | 11 | 13 | 11 | 14 |
冠层投影 面积/m² | 9.89 | 3.22 | 2.19 | 5.14 | 2.82 |
冠层体积/m³ | 9.50 | 2.22 | 1.49 | 3.17 | 1.86 |
图4 树干茎流率与冠层结构参数的相关性分析注:**表示在0.01水平(双尾)相关性显著;*表示在0.05水平(双尾)相关性显著。SfVPR:树干茎流率;PH:株高;GD:基径;BA:基部面积;LAI:叶面积指数;NB:枝条数;CV:冠层体积;CPA:冠层投影面积
Fig.4 Correlation of stemflow per unit rainfall (SfVPR) and canopy morphological metrics
编号 | 基径/mm | 长度/cm | 朝向/(°) | 枝下高/cm | 倾角>65° | 倾角<65° |
---|---|---|---|---|---|---|
Ck_1 | 0.48* | 0.39 | -0.15 | -0.19 | -0.51* | 0.90** |
Ck_2 | 0.89** | -0.66* | -0.19 | -0.47 | -0.89** | 0.97* |
Ck_3 | 0.92** | 0.78** | -0.14 | -0.09 | -0.98* | 0.66 |
Ck_4 | 0.78* | 0.93** | 0.17 | -0.07 | NA | 0.95** |
Ck_5 | 0.99** | 0.61* | 0.14 | 0.51 | -0.84* | -0.62 |
表2 灌木分枝形态特征与树干茎流产量相关性分析
Table 2 Correlation between stemflow production and branch morphological characteristics of Caragana korshinskii
编号 | 基径/mm | 长度/cm | 朝向/(°) | 枝下高/cm | 倾角>65° | 倾角<65° |
---|---|---|---|---|---|---|
Ck_1 | 0.48* | 0.39 | -0.15 | -0.19 | -0.51* | 0.90** |
Ck_2 | 0.89** | -0.66* | -0.19 | -0.47 | -0.89** | 0.97* |
Ck_3 | 0.92** | 0.78** | -0.14 | -0.09 | -0.98* | 0.66 |
Ck_4 | 0.78* | 0.93** | 0.17 | -0.07 | NA | 0.95** |
Ck_5 | 0.99** | 0.61* | 0.14 | 0.51 | -0.84* | -0.62 |
序号 | 基径 /mm | 基径标准化 系数 | 基径 评价值 | 长度 /cm | 长度标准化 系数 | 长度 评价值 | 倾角 /(°) | 倾角标准 化系数 | 倾角 评价值 | 综合 评价值 |
---|---|---|---|---|---|---|---|---|---|---|
A | 28 | 0.130 | 0.039 | 237 | 0.120 | 0.009 | 20 | 0.049 | 0.031 | 0.078 |
B | 25 | 0.066 | 0.050 | 237 | 0.060 | 0.012 | 85 | 0.061 | 0.003 | 0.065 |
C | 8.5 | 0.023 | 0.017 | 221 | 0.056 | 0.011 | 90 | 0.065 | 0.003 | 0.031 |
D | 13.5 | 0.036 | 0.027 | 229 | 0.058 | 0.012 | 90 | 0.064 | 0.003 | 0.042 |
E | 33.55 | 0.089 | 0.067 | 225 | 0.057 | 0.011 | 85 | 0.061 | 0.003 | 0.081 |
F | 16.51 | 0.044 | 0.033 | 221 | 0.056 | 0.011 | 85 | 0.061 | 0.003 | 0.047 |
G | 18.12 | 0.048 | 0.036 | 269 | 0.068 | 0.014 | 90 | 0.064 | 0.003 | 0.053 |
H | 19.56 | 0.052 | 0.039 | 141 | 0.036 | 0.007 | 85 | 0.061 | 0.003 | 0.049 |
I | 17.46 | 0.046 | 0.035 | 174 | 0.044 | 0.009 | 90 | 0.064 | 0.003 | 0.047 |
J | 19.53 | 0.052 | 0.039 | 275 | 0.069 | 0.014 | 90 | 0.064 | 0.003 | 0.056 |
K | 18.44 | 0.085 | 0.026 | 267 | 0.135 | 0.010 | 60 | 0.146 | 0.091 | 0.127 |
L | 33.88 | 0.157 | 0.047 | 261 | 0.132 | 0.010 | 65 | 0.159 | 0.099 | 0.156 |
M | 36.27 | 0.096 | 0.073 | 263 | 0.066 | 0.013 | 70 | 0.050 | 0.002 | 0.088 |
N | 25.63 | 0.119 | 0.036 | 199 | 0.101 | 0.007 | 60 | 0.146 | 0.091 | 0.135 |
O | 32.39 | 0.086 | 0.065 | 216 | 0.054 | 0.011 | 75 | 0.053 | 0.002 | 0.078 |
P | 20.1 | 0.053 | 0.040 | 275 | 0.069 | 0.014 | 80 | 0.057 | 0.002 | 0.056 |
Q | 16.67 | 0.044 | 0.033 | 288 | 0.073 | 0.015 | 80 | 0.057 | 0.002 | 0.050 |
R | 26.49 | 0.070 | 0.053 | 172 | 0.043 | 0.009 | 70 | 0.050 | 0.002 | 0.064 |
S | 18.41 | 0.085 | 0.026 | 202 | 0.102 | 0.008 | 65 | 0.159 | 0.099 | 0.132 |
T | 25.97 | 0.069 | 0.052 | 229 | 0.058 | 0.012 | 75 | 0.053 | 0.002 | 0.066 |
U | 16.48 | 0.044 | 0.033 | 251 | 0.063 | 0.013 | 85 | 0.061 | 0.003 | 0.048 |
V | 32.37 | 0.086 | 0.065 | 282 | 0.071 | 0.014 | 80 | 0.057 | 0.002 | 0.081 |
W | 12.58 | 0.058 | 0.018 | 174 | 0.088 | 0.006 | 50 | 0.122 | 0.076 | 0.100 |
X | 23.65 | 0.110 | 0.033 | 197 | 0.100 | 0.007 | 35 | 0.085 | 0.053 | 0.094 |
Y | 24.24 | 0.112 | 0.034 | 227 | 0.115 | 0.008 | 30 | 0.073 | 0.046 | 0.088 |
Z | 31.05 | 0.144 | 0.043 | 212 | 0.107 | 0.008 | 25 | 0.061 | 0.038 | 0.089 |
表3 Ck_1各分枝参数、标准化系数及综合评价值
Table 3 Branch parameters,standardization coefficients,and comprehensive evaluation value of Ck_1
序号 | 基径 /mm | 基径标准化 系数 | 基径 评价值 | 长度 /cm | 长度标准化 系数 | 长度 评价值 | 倾角 /(°) | 倾角标准 化系数 | 倾角 评价值 | 综合 评价值 |
---|---|---|---|---|---|---|---|---|---|---|
A | 28 | 0.130 | 0.039 | 237 | 0.120 | 0.009 | 20 | 0.049 | 0.031 | 0.078 |
B | 25 | 0.066 | 0.050 | 237 | 0.060 | 0.012 | 85 | 0.061 | 0.003 | 0.065 |
C | 8.5 | 0.023 | 0.017 | 221 | 0.056 | 0.011 | 90 | 0.065 | 0.003 | 0.031 |
D | 13.5 | 0.036 | 0.027 | 229 | 0.058 | 0.012 | 90 | 0.064 | 0.003 | 0.042 |
E | 33.55 | 0.089 | 0.067 | 225 | 0.057 | 0.011 | 85 | 0.061 | 0.003 | 0.081 |
F | 16.51 | 0.044 | 0.033 | 221 | 0.056 | 0.011 | 85 | 0.061 | 0.003 | 0.047 |
G | 18.12 | 0.048 | 0.036 | 269 | 0.068 | 0.014 | 90 | 0.064 | 0.003 | 0.053 |
H | 19.56 | 0.052 | 0.039 | 141 | 0.036 | 0.007 | 85 | 0.061 | 0.003 | 0.049 |
I | 17.46 | 0.046 | 0.035 | 174 | 0.044 | 0.009 | 90 | 0.064 | 0.003 | 0.047 |
J | 19.53 | 0.052 | 0.039 | 275 | 0.069 | 0.014 | 90 | 0.064 | 0.003 | 0.056 |
K | 18.44 | 0.085 | 0.026 | 267 | 0.135 | 0.010 | 60 | 0.146 | 0.091 | 0.127 |
L | 33.88 | 0.157 | 0.047 | 261 | 0.132 | 0.010 | 65 | 0.159 | 0.099 | 0.156 |
M | 36.27 | 0.096 | 0.073 | 263 | 0.066 | 0.013 | 70 | 0.050 | 0.002 | 0.088 |
N | 25.63 | 0.119 | 0.036 | 199 | 0.101 | 0.007 | 60 | 0.146 | 0.091 | 0.135 |
O | 32.39 | 0.086 | 0.065 | 216 | 0.054 | 0.011 | 75 | 0.053 | 0.002 | 0.078 |
P | 20.1 | 0.053 | 0.040 | 275 | 0.069 | 0.014 | 80 | 0.057 | 0.002 | 0.056 |
Q | 16.67 | 0.044 | 0.033 | 288 | 0.073 | 0.015 | 80 | 0.057 | 0.002 | 0.050 |
R | 26.49 | 0.070 | 0.053 | 172 | 0.043 | 0.009 | 70 | 0.050 | 0.002 | 0.064 |
S | 18.41 | 0.085 | 0.026 | 202 | 0.102 | 0.008 | 65 | 0.159 | 0.099 | 0.132 |
T | 25.97 | 0.069 | 0.052 | 229 | 0.058 | 0.012 | 75 | 0.053 | 0.002 | 0.066 |
U | 16.48 | 0.044 | 0.033 | 251 | 0.063 | 0.013 | 85 | 0.061 | 0.003 | 0.048 |
V | 32.37 | 0.086 | 0.065 | 282 | 0.071 | 0.014 | 80 | 0.057 | 0.002 | 0.081 |
W | 12.58 | 0.058 | 0.018 | 174 | 0.088 | 0.006 | 50 | 0.122 | 0.076 | 0.100 |
X | 23.65 | 0.110 | 0.033 | 197 | 0.100 | 0.007 | 35 | 0.085 | 0.053 | 0.094 |
Y | 24.24 | 0.112 | 0.034 | 227 | 0.115 | 0.008 | 30 | 0.073 | 0.046 | 0.088 |
Z | 31.05 | 0.144 | 0.043 | 212 | 0.107 | 0.008 | 25 | 0.061 | 0.038 | 0.089 |
编号 | 基径/mm | 长度/cm | 倾角/(°) |
---|---|---|---|
Ck_1(>65°) | 0.75 | 0.20 | 0.04 |
Ck_1(≤65°) | 0.30 | 0.07 | 0.62 |
表4 各指标权重值
Table 4 Weights of each indicator
编号 | 基径/mm | 长度/cm | 倾角/(°) |
---|---|---|---|
Ck_1(>65°) | 0.75 | 0.20 | 0.04 |
Ck_1(≤65°) | 0.30 | 0.07 | 0.62 |
综合评价值 | Ck_1 | Ck_2 | Ck_3 | Ck_4 | Ck_5 |
---|---|---|---|---|---|
>65° | 0.71** | -0.86* | 0.92** | NA | 0.84* |
≤65° | 0.31 | 0.99* | 0.66 | 0.97** | 0.98* |
表5 柠条锦鸡儿树干茎流产量与熵权法综合评价值相关性分析
Table 5 Correlation between Caragana korshinskii and entropy weight
综合评价值 | Ck_1 | Ck_2 | Ck_3 | Ck_4 | Ck_5 |
---|---|---|---|---|---|
>65° | 0.71** | -0.86* | 0.92** | NA | 0.84* |
≤65° | 0.31 | 0.99* | 0.66 | 0.97** | 0.98* |
编号 | 基径/mm | 长度/cm | 倾角/(°) |
---|---|---|---|
Ck_1(>65°) | 0.75 | 0.20 | 0.04 |
Ck_1(≤65°) | 0.30 | 0.07 | 0.62 |
Ck_2(>65°) | 0.18 | 0.35 | 0.47 |
Ck_2(≤65°) | 0.41 | 0.03 | 0.57 |
Ck_3(>65°) | 0.68 | 0.25 | 0.07 |
Ck_3(≤65°) | 0.45 | 0.46 | 0.10 |
Ck_4(≤65°) | 0.33 | 0.21 | 0.46 |
Ck_5(>65°) | 0.81 | 0.11 | 0.08 |
Ck_5(≤65°) | 0.56 | 0.30 | 0.14 |
平均值±标准差 | 0.50±0.20 | 0.22±0.13 | 0.28±0.23 |
表6 各指标权重值
Table 6 Weights of each indicator
编号 | 基径/mm | 长度/cm | 倾角/(°) |
---|---|---|---|
Ck_1(>65°) | 0.75 | 0.20 | 0.04 |
Ck_1(≤65°) | 0.30 | 0.07 | 0.62 |
Ck_2(>65°) | 0.18 | 0.35 | 0.47 |
Ck_2(≤65°) | 0.41 | 0.03 | 0.57 |
Ck_3(>65°) | 0.68 | 0.25 | 0.07 |
Ck_3(≤65°) | 0.45 | 0.46 | 0.10 |
Ck_4(≤65°) | 0.33 | 0.21 | 0.46 |
Ck_5(>65°) | 0.81 | 0.11 | 0.08 |
Ck_5(≤65°) | 0.56 | 0.30 | 0.14 |
平均值±标准差 | 0.50±0.20 | 0.22±0.13 | 0.28±0.23 |
1 | Návar J, Bryan R.Interception loss and rainfall redistribution by three semi-arid growing shrubs in Northeastern Mexico[J].Journal of Hydrology,1990,115:51-63. |
2 | Keim R F, Skaugset A E, Weiler M.Temporal persistence of spatial patterns in throughfall[J].Journal of Hydrology,2005,314:263-274. |
3 | Mauchamp A, Janeau J L.Water funnelling by the crown of Flourensia cernua,a Chihuahuan Desert shrub[J].Journal of Arid Environments,1993,25(3):299-306. |
4 | Levia Jr D F, Frost E E.A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems[J].Journal of Hydrology,2003,274:1-29. |
5 | Llorens P, Domingo F.Rainfall partitioning by vegetation under Mediterranean conditions:a review of studies in Europe[J].Journal of Hydrology,2007,335:37-54. |
6 | Zhang Y, Wang X, Pan Y,et al.Global quantitative synthesis of effects of biotic and abiotic factors on stemflow production in woody ecosystems[J].Global Ecology and Biogeography,2021,30:1713-1723. |
7 | Parker G G.Throughfall and stemflow in the forest nutrient cycle[J].Advances in Ecological Research,1983,13:57-133. |
8 | Johnson M S, Lehmann J.Double-funneling of trees:stemflow and root-induced preferential flow[J].Ecoscience,2006,13(3):324-333. |
9 | Guo L, Mount G J, Hudson S,et al.Pairing geophysical techniques improves understanding of the near-surface critical zone:visualization of preferential routing of stemflow along coarse roots[J].Geoderma,2020,357:113953. |
10 | Zhang Y, Wang X, Hu R,et al.Stemflow in two xerophytic shrubs and its significance to soil water and nutrient enrichment[J].Ecological Research,2013,28:567-579. |
11 | Pugnaire F I, Haase P, Puigdefábregas J,et al.Facilitation and succession under the canopy of a leguminous shrub,Retama sphaerocarpa,in a semi-arid environment in South-east Spain[J].Oikos,1996:455-464. |
12 | Schlesinger W H, Raikes J A, Hartley A E,et al.On the spatial pattern of soil nutrients in desert ecosystems:ecological archives E077-002[J].Ecology,1996,77(2):364-374. |
13 | Herwitz S R.Infiltration‐excess caused by stemflow in a cyclone‐prone tropical rainforest[J].Earth Surface Processes and lLandforms,1986,11(4):401-412. |
14 | Neave M, Abrahams A D.Vegetation influences on water yields from grassland and shrubland ecosystems in the Chihuahuan Desert[J].Earth Surface Processes and Landforms,2002,27(9):1011-1020. |
15 | Charlier J B, Moussa R, Cattan P,et al.Modelling runoff at the plot scale taking into account rainfall partitioning by vegetation:application to stemflow of banana (Musa spp.) plant[J].Hydrology and Earth System Sciences,2009,13(11):2151-2168. |
16 | Herwitz S R.Buttresses of tropical rainforest trees influence hillslope processes[J].Earth Surface Processes and Landforms,1988,13(6):563-567. |
17 | Wainwright J, Parsons A J, Abrahams A D.Rainfall energy under creosotebush[J].Journal of Arid Environments,1999,43(2):111-120. |
18 | Schwärzel K, Ebermann S, Schalling N.Evidence of double-funneling effect of beech trees by visualization of flow pathways using dye tracer[J].Journal of Hydrology,2012,470:184-192. |
19 | Taniguchi M, Tsujimura M, Tanaka T.Significance of stemflow in groundwater recharge 1:evaluation of the stemflow contribution to recharge using a mass balance approach[J].Hydrological Processes,1996,10(1):71-80. |
20 | Chang S C, Matzner E.The effect of beech stemflow on spatial patterns of soil solution chemistry and seepage fluxes in a mixed beech/oak stand[J].Hydrological Processes,2000,14(1):135-144. |
21 | Liang W L, Kosugi K, Mizuyama T.Soil water dynamics around a tree on a hillslope with or without rainwater supplied by stemflow[J].Water Resources Research,2011,47(2). |
22 | Awasthi O P, Sharma E, Palni L M S.Stemflow:a source of nutrients in some naturally growing epiphytic orchids of the Sikkim Himalaya[J].Annals of Botany,1995,75(1):5-11. |
23 | Martinez-Meza E, Whitford W G.Stemflow,throughfall and channelization of stemflow by roots in three Chihuahuan Desert shrubs[J].Journal of Arid Environments,1996,32(3):271-288. |
24 | Li X Y, Liu L Y, Gao S Y,et al.Stemflow in three shrubs and its effect on soil water enhancement in semiarid loess region of China[J].Agricultural and Forest Meteorology,2008,148(10):1501-1507. |
25 | Shou W, Musa A, Liu Z,et al.Rainfall partitioning characteristics of three typical sand-fixing shrubs in Horqin Sand Land,North-eastern China[J].Hydrology Research,2017,48(2):571-583. |
26 | Kelly J M.Power plant influences on bulk precipitation,throughfall,and stemflow nutrient inputs[R].American Society of Agronomy,Crop Science Society of America,and Soil Science Society of America.1984. |
27 | Levia D F, Van Stan II J T, Mage S M,et al.Temporal variability of stemflow volume in a beech-yellow poplar forest in relation to tree species and size[J].Journal of Hydrology,2010,380:112-120. |
28 | Brown Jr J H, Barker Jr A C.An analysis of throughfall and stemflow in mixed oak stands[J].Water Resources Research,1970,6(1):316-323. |
29 | Ford E D, Deans J D.The effects of canopy structure on stemflow,throughfall and interception loss in a young Sitka spruce plantation[J].Journal of Applied Ecology,1978,15(3):905-917. |
30 | 杨永胜,卜崇峰,高国雄.平茬措施对柠条生理特征及土壤水分的影响[J].生态学报,2012,32(4):323-332. |
31 | Zhang Y, Wang X, Pan Y,et al.Alteration in isotopic composition of gross rainfall as it is being partitioned into throughfall and stemflow by xerophytic shrub canopies within water-limited arid desert ecosystems[J].Science of the Total Environment,2019,692:631-639. |
32 | 李新荣.荒漠生物土壤结皮生态与水文学研究[M].北京:高等教育出版社,2012. |
33 | Zhang Y, Wang X, Pan Y,et al.Relative contribution of biotic and abiotic factors to stemflow production and funneling efficiency:a long-term field study on a xerophytic shrub species in Tengger Desert of northern China[J].Agricultural and Forest Meteorology,2020,280:107781. |
34 | Wang X P, Wang Z, Cui Y,et al.Variation in soil seed banks composition at the desert microhabitats of Caragana korshinskii shrubs[J].Arid Land Research and Management,2010,24(3):238-252. |
35 | 张亚峰,王新平,虎瑞,等.荒漠灌丛降雨再分配对土壤pH值的影响[J].中国沙漠,2013,33(5):1400-1405. |
36 | Germer S, Werther L, Elsenbeer H.Have we underestimated stemflow?Lessons from an open tropical rainforest[J].Journal of Hydrology,2010,395:169-179. |
37 | Jian S Q, Zhao C Y, Fang S M,et al.Characteristics of Caragana korshinskii and Hippophae rhamnoides stemflow and their significance in soil moisture enhancement in Loess Plateau,China[J].Journal of Arid Land,2014,6:105-116. |
38 | Zhang S Y, Li X Y, Li L,et al.The measurement and modelling of stemflow in an alpine Myricaria squamosa community[J].Hydrological Processes,2015,29(6):889-899. |
39 | Zhang Y, Wang X, Hu R,et al.Rainfall partitioning into throughfall,stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem,Northwestern China[J].Journal of Hydrology,2015,527:1084-1095. |
40 | Zhang Y, Wang X, Hu R,et al.Stemflow volume per unit rainfall as a good variable to determine the relationship between stemflow amount and morphological metrics of shrubs[J].Journal of Arid Environments,2017,141:1-6. |
41 | Manfroi O J, Koichiro K, Nobuaki T,et al.The stemflow of trees in a Bornean lowland tropical forest[J].Hydrological Processes,2004,18(13):2455-2474. |
42 | Pryet A, Dominguez C, Tomai P F,et al.Quantification of cloud water interception along the windward slope of Santa Cruz Island,Galapagos (Ecuador)[J].Agricultural and Forest Meteorology,2012,161:94-106. |
43 | Rakestraw E, Jacobson S, Gurian P L,et al.Quantification of stemflow in three isolated shrub species in an urban environment[J].Frontiers in Built Environment,2019,5:110. |
44 | Yang X, Wei X.Stemflow production differ significantly among tree and shrub species on the Chinese Loess Plateau[J].Journal of Hydrology,2019,568:427-436. |
45 | Domingo F, Puigdefabregas J, Moro M J,et al.Role of vegetation cover in the biogeochemical balances of a small afforested catchment in Southeastern Spain[J].Journal of Hydrology,1994,159:275-289. |
46 | 杨志鹏,李小雁,孙永亮,等.毛乌素沙地沙柳灌丛降雨截留与树干茎流特征[J].水科学进展,2008,19(5):693-698. |
47 | Zhang S Y, Li X Y, Jiang Z Y,et al.Modelling of rainfall partitioning by a deciduous shrub using a variable parameters Gash model[J].Ecohydrology,2018,11(7):e2011. |
48 | 李小雁.干旱地区土壤-植被-水文耦合、响应与适应机制[J].中国科学:地球科学,2011,41(12):1721-1730. |
49 | Li X Y, Yang Z P, Li Y T,et al.Connecting ecohydrology and hydropedology in desert shrubs:stemflow as a source of preferential flow in soils[J].Hydrology and Earth System Sciences,2009,13(7):1133-1144. |
50 | Park H T, Hattori S.Applicability of stand structural characteristics to stemflow modeling[J].Journal of Forest Research,2002,7(2):91-98. |
51 | Zhang Y, Wang X, Hu R,et al.Differential intra-specific stemflow funnelling efficiencies of Caragana korshinskii within arid desert ecosystems[J].Hydrology Research,2017,48(6):1611-1623. |
52 | Zhang Y, Wang X, Pan Y,et al.How do rainfall intensity and raindrop size determine stemflow production?quantitative evaluation from field rainfall simulation experiments[J].Hydrological Sciences Journal,2021,66(13):1979-1985. |
53 | Honda E A, Mendonça A H, Durigan G.Factors affecting the stemflow of trees in the Brazilian Cerrado[J].Ecohydrology,2015,8(7):1351-1362. |
54 | Whitworth-Hulse J I, Magliano P N, Zeballos S R,et al.Advantages of rainfall partitioning by the global invader Ligustrum lucidum over the dominant native Lithraea molleoides in a dry forest[J].Agricultural and Forest Meteorology,2020,290:108013. |
55 | Martinez-Meza E.Stemflow,Throughfall,and Root Water Channelization by Three Arid Land Shrubs in Southern New Mexico[D].Las Cruces,USA:New Mexico State University,1994. |
56 | 赵文玥,吉喜斌,金博文,等.西北干旱区泡泡刺灌丛的降雨再分配特征及影响因素分析[J].生态学报,2022,42(2):804-817. |
57 | Yuan C, Gao G, Fu B.Comparisons of stemflow and its bio-/abiotic influential factors between two xerophytic shrub species[J].Hydrology and Earth System Sciences,2017,21(3):1421-1438. |
58 | 袁川,岳晓萍,张亚峰,等.冠层降雨再分配驱动生态系统养分富集:机制、数量与模式[J].中国科学:地球科学,2024,54(5):1556-1572. |
[1] | 赵逸雪, 赵洋, 连煜超, 赵燕翘, 许文文. 固沙灌木种类和密度对凋落物及生物土壤结皮的影响[J]. 中国沙漠, 2025, 45(3): 262-270. |
[2] | 李佳乐, 陈蓓蓓, 张定海. 中国北方沙区固沙灌木空间点格局研究进展[J]. 中国沙漠, 2025, 45(3): 102-112. |
[3] | 邢铭强, 马可, 陈彩亮, 李菁. 河西地区农业绿色发展水平测度及耦合协调提升路径[J]. 中国沙漠, 2024, 44(6): 207-219. |
[4] | 黑维高, 詹瑾, 韩丹, 杨红玲, 李玉霖. 科尔沁沙地2种优势固沙灌木的相容性生物量模型[J]. 中国沙漠, 2019, 39(5): 193-199. |
[5] | 童新风, 杨红玲, 宁志英, 张子谦, 李玉霖. 科尔沁沙地优势固沙灌木的生物量预测模型[J]. 中国沙漠, 2018, 38(3): 553-559. |
[6] | 周传猛, 陈垣, 李向群, 郭凤霞, 白刚. 基于熵权法模糊物元模型的独一味(Lamiophlomis rotata)适宜性分布[J]. 中国沙漠, 2017, 37(1): 93-99. |
[7] | 张亚峰1,2, 王新平1, 虎 瑞1,2, 潘颜霞1. 荒漠灌丛降雨再分配对土壤pH值的影响[J]. 中国沙漠, 2013, 33(5): 1400-1405. |
[8] | 徐先英1,2,3, 严 平1, 郭树江2,3, 柴成武2,3. 干旱荒漠区绿洲边缘典型固沙灌木的降水截留特征[J]. 中国沙漠, 2013, 33(1): 141-145. |
[9] | 肖继东;王 智;师庆东*;常顺利;邢文渊. 基于熵权法的土地覆被动态遥感监测与评价——以新疆伊犁地区和博州为例[J]. 中国沙漠, 2011, 31(5): 1286-1292. |
[10] | 杨志鹏;李小雁;伊万娟. 荒漠灌木树干茎流及其生态水文效应研究进展[J]. 中国沙漠, 2010, 30(2): 303-311. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
©2018中国沙漠 编辑部
地址: 兰州市天水中路8号 (730000)
电话:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn