中国沙漠 ›› 2023, Vol. 43 ›› Issue (6): 151-165.DOI: 10.7522/j.issn.1000-694X.2023.00049
• • 上一篇
宋兆斌1,2(), 岳平1, 李香云1,2, 胡亚1, 乔静娟1,2, 左小安1(
)
收稿日期:
2022-12-02
修回日期:
2023-05-10
出版日期:
2023-11-20
发布日期:
2023-11-30
通讯作者:
左小安
作者简介:
左小安(E-mail: zuoxa@lzb.ac.cn)基金资助:
Zhaobin Song1,2(), Ping Yue1, Xiangyun Li1,2, Ya Hu1, Jingjuan Qiao1,2, Xiaoan Zuo1(
)
Received:
2022-12-02
Revised:
2023-05-10
Online:
2023-11-20
Published:
2023-11-30
Contact:
Xiaoan Zuo
摘要:
草原是陆地生态系统的关键组成部分,为维持区域生态安全发挥着极为重要的作用。土壤多功能性(soil multifunctionality,SMF)是衡量土壤系统提供多种功能的综合指标,对评估草原生态系统功能和区域可持续发展具有重要指导意义。然而,目前SMF研究仍处于初步阶段,研究对象多为农田生态系统,对于草原等自然生态系统的研究较少。此外,对草原生态系统SMF与植物和土壤微生物的关系以及全球变化对草原生态系统SMF影响机制的认识十分有限。因此,本文从SMF的概念和内涵、量化指标及方法、植物和土壤微生物与SMF的关系、全球变化对SMF的影响以及SMF的空间变异性5个方面论述SMF的研究进展,梳理了草原生态系统SMF的变化特征及影响机制。根据当前研究中存在的问题提出了今后研究应重点关注的内容:(1)统一规整SMF量化体系;(2)SMF在不同空间尺度上的转换机制;(3)不同类型草原生态系统SMF驱动机制;(4)土地利用变化、降水增加、气候变暖和氮沉降等全球变化交互作用对SMF的影响;(5)地上植物功能与SMF的联系和互馈机制;(6)根系功能性状对SMF的影响和植物在不同组织水平对SMF的贡献;(7)微生物稀有种群以及植物-土壤动物-土壤微生物多营养级联动对SMF的影响。
中图分类号:
宋兆斌, 岳平, 李香云, 胡亚, 乔静娟, 左小安. 草原生态系统土壤多功能性及影响机制研究进展[J]. 中国沙漠, 2023, 43(6): 151-165.
Zhaobin Song, Ping Yue, Xiangyun Li, Ya Hu, Jingjuan Qiao, Xiaoan Zuo. Variation and influencing mechanism of soil multifunctionality in grassland ecosystem[J]. Journal of Desert Research, 2023, 43(6): 151-165.
指标内容 | 指标类型 | 养分储量 | 养分状态 | 养分转化率 | 生态过程 |
---|---|---|---|---|---|
养分循环 | 碳循环 | 有机碳*、土壤微生物碳… | 可溶性有机碳*… | α葡糖苷酶*、β葡糖苷酶*、β木糖苷酶*、纤维素二糖水解酶*… | 土壤呼吸、CO2通量、凋落物分解速率、代谢熵… |
氮循环 | 土壤全氮*、土壤微生物氮… | 铵态氮*、硝态氮*… | β-1, 4-N-乙酰氨基葡萄糖苷酶*、亮氨酸氨基肽酶*… | CH4通量、N2O通量… | |
磷循环 | 土壤全磷*、土壤微生物磷… | 速效磷*… | 酸/中/碱性磷酸酶*… | ||
硫循环 | 土壤硫含量… | 硫酸酯酶… | |||
水分涵养 | 土壤水稳性团聚体、土壤持水量、土壤含水量、土壤水力传导度… | ||||
物理性质 | pH、土壤团聚体、孔隙度、阳离子交换量… |
表1 SMF量化指标
Table 1 Assessment indicators for SMF
指标内容 | 指标类型 | 养分储量 | 养分状态 | 养分转化率 | 生态过程 |
---|---|---|---|---|---|
养分循环 | 碳循环 | 有机碳*、土壤微生物碳… | 可溶性有机碳*… | α葡糖苷酶*、β葡糖苷酶*、β木糖苷酶*、纤维素二糖水解酶*… | 土壤呼吸、CO2通量、凋落物分解速率、代谢熵… |
氮循环 | 土壤全氮*、土壤微生物氮… | 铵态氮*、硝态氮*… | β-1, 4-N-乙酰氨基葡萄糖苷酶*、亮氨酸氨基肽酶*… | CH4通量、N2O通量… | |
磷循环 | 土壤全磷*、土壤微生物磷… | 速效磷*… | 酸/中/碱性磷酸酶*… | ||
硫循环 | 土壤硫含量… | 硫酸酯酶… | |||
水分涵养 | 土壤水稳性团聚体、土壤持水量、土壤含水量、土壤水力传导度… | ||||
物理性质 | pH、土壤团聚体、孔隙度、阳离子交换量… |
1 | Wall D H, Nielsen U N, Six J.Soil biodiversity and human health[J].Nature,2015,528(7580):69-76. |
2 | Karlen D L, Ditzler C A, Andrews S S.Soil quality:why and how?[J].Geoderma,2003,114:145-156. |
3 | Brussaard L.Biodiversity and ecosystem functioning in soil[J].Ambio,1997,26(8):563-570. |
4 | Bennett J A, Klironomos J.Mechanisms of plant-soil feedback:interactions among biotic and abiotic drivers[J].New Phytologist,2019,222(1):91-96. |
5 | Xi N, Adler P B, Chen D,et al.Relationships between plant-soil feedbacks and functional traits[J].Journal of Ecology,2021,109(9):3411-3423. |
6 | Bouma J, Mc Bratney A.Framing soils as an actor when dealing with wicked environmental problems[J].Geoderma,2013,200:130-139. |
7 | Hartemink A E, Mc Bratney A.A soil science renaissance[J].Geoderma,2008,148:123-129. |
8 | Creamer R E, Barel J M, Bongiorno G,et al.The life of soils:Integrating the who and how of multifunctionality[J].Soil Biology and Biochemistry,2022,166:108561. |
9 | Manning P, van der Plas F, Jonathan S,et al.Redefining ecosystem multifunctionality[J].Nature Ecology & Evolution,2018,2(3):427-436. |
10 | Lefcheck J S, Byrnes J E K, Isbell F,et al.Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats[J].Nature Communications,2015,6(1):1-7. |
11 | Zhang J Z, Li T T, Jia J Y,et al.Bacterial taxa and fungal diversity are the key factors determining soil multifunctionality in different cropping systems[J].Land Degradation & Development,2021,32:5012-5022. |
12 | Sanderson M A, Skinner R H, Barker D J,et al.Plant species diversity and management of temperate forage and grazing land ecosystems[J].Crop Science,2004,44(4):1132-1144. |
13 | Hector A, Bagchi R.Biodiversity and ecosystem multifunctionality [J].Nature,2007,448(7150):188-190. |
14 | Haygarth P M, Ritz K.The future of soils and land use in the UK:soil systems for the provision of land-based ecosystem services[J].Land Use Policy,2009,26:187-197. |
15 | Schulte R P O, Creamer R E, Donnellan T,et al.Functional land management:a framework for managing soil-based ecosystem services for the sustainable intensification of agriculture[J].Environmental Science & Policy,2014,38:45-58. |
16 | Hu W, Ran J, Dong L,et al.Aridity-driven shift in biodiversity-soil multifunctionality relationships[J].Nature Communications,2021,12(1):1-15. |
17 | Bai Y, Cotrufo M F.Grassland soil carbon sequestration:current understanding,challenges,and solutions[J].Science,2022,377(6606):603-608. |
18 | Liu Y R, Delgado-Baquerizo M, Trivedi P,et al.Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change[J].Soil Biology and Biochemistry,2017,107:208-217. |
19 | Fry E L, Savage J, Hall A L,et al.Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland[J].Ecology,2018,99(10):2260-2271. |
20 | Valencia E, Gross N, Quero J L,et al.Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality[J].Global Change Biology,2018,24(12):5642-5654. |
21 | Guo Y, Xu T, Cheng J,et al.Above-and belowground biodiversity drives soil multifunctionality along a long-term grassland restoration chronosequence[J].Science of The Total Environment,2021,772:145010. |
22 | Mausel P W.Soil quality in Illinois:an example of a soils geography resource analysis[J].The Professional Geographer,1971,23(2):127-136. |
23 | Doran J W, Parkin T B.Defining and assessing soil quality[J].Environmental Science,1994,35:1-21. |
24 | Andrews S S, Karlen D L, Cambardella C A.The soil management assessment framework[J].Soil Science Society of America Journal,2004,68(6):1945-1962. |
25 | Bünemann E K, Bongiorno G, Bai Z,et al.Soil quality:a critical review[J].Soil Biology and Biochemistry,2018,120:105-125. |
26 | 李奕赞,张江周,贾吉玉,等.农田土壤生态系统多功能性研究进展[J].土壤学报,59(5):1187-1195. |
27 | Wen Z, Zheng H, Zhao H,et al.Land-use intensity indirectly affects soil multifunctionality via a cascade effect of plant diversity on soil bacterial diversity[J].Global Ecology and Conservation,2020,23:e01061. |
28 | Wang H, Bu L, Tian J,et al.Particular microbial clades rather than total microbial diversity best predict the vertical profile variation in soil multifunctionality in desert ecosystems[J].Land Degradation & Development,2021,32(6):2157-2168. |
29 | Su Y G, Liu J, Zhang Y M,et al.More drought leads to a greater significance of biocrusts to soil multifunctionality[J].Functional Ecology,2021,35:989-1000. |
30 | Dooley A, Isbell F, Kirwan L,et al.Testing the effects of diversity on ecosystem multi-functionality using a multivariate model[J].Ecology Letters,2015,18:1242-1251. |
31 | Maestre F T, Delgado-Baquerizo M, Jeffries T C,et al.Increasing aridity reduces soil microbial diversity and abundance in global drylands[J].Proceedings of the National Academy of Sciences,2015,112(51):15684-15689. |
32 | Byrnes J E K, Gamfeldt L, Isbell F,et al.Investigating the relationship between biodiversity and ecosystem multifunctionality:challenges and solutions[J].Methods in Ecology and Evolution,2014,5(2):111-124. |
33 | 徐炜,井新,马志远,等.生态系统多功能性的测度方法[J].生物多样性,2016,24(1):72-84. |
34 | Li J W, Liu Y L, Hai X Y,et al.Dynamics of soil microbial C∶N∶P stoichiometry and its driving mechanisms following natural vegetation restoration after farmland abandonment[J].Science of Total Environment,2019,693:133613. |
35 | Maestre F T, Quero J L, Gotelli N J,et al.Plant species richness and ecosystem multifunctionality in global drylands[J].Science,2012,335:214-218. |
36 | Delgado-Baquerizo M, Maestre F T, Reich P B,et al.Microbial diversity drives multifunctionality in terrestrial ecosystems[J].Nature Communications,2016,7(1):1-8. |
37 | Jing X, Sanders N J, Shi Y,et al.The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate[J].Nature Communications,2015,6(Sep). |
38 | Orwin K H, Buckland S M, Johnson D,et al.Linkages of plant traits to soil properties and the functioning of temperate grassland[J].Journal of Ecology,2010,98(5):1074-1083. |
39 | Dijkstra F A, Carrillo Y, Pendall E,et al.Rhizosphere priming:a nutrient perspective[J].Frontiers in Microbiology,2013,4:216. |
40 | Baets S D, Poesen J, Knapen A,et al.Impact of root architecture on the erosion‐reducing potential of roots during concentrated flow[J].Earth Surface Processes and Landforms,2007,32(9):1323-1345. |
41 | Stokes A, Atger C, Bengough A G,et al.Desirable plant root traits for protecting natural and engineered slopes against landslides[J].Plant and Soil,2009,324(1):1-30. |
42 | Kuzyakov Y.Priming effects:interactions between living and dead organic matter[J].Soil Biology and Biochemistry,2010,42(9):1363-1371. |
43 | Graf F, Frei M.Soil aggregate stability related to soil density,root length,and mycorrhiza using site-specific Alnus incana and Melanogaster variegatus s.l.[J].Ecological Engineering,2013,57:314-323. |
44 | Eisenhauer N, Lanoue A, Strecker T,et al.Root biomass and exudates link plant diversity with soil bacterial and fungal biomass[J].Scientific Reports,2017,7:1-8. |
45 | Yan Y, Zhang Q, Buyantuev A,et al.Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality[J].Science of the Total Environment,2020,726:138529. |
46 | Hautier Y, Isbell F, Borer E T,et al.Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality[J].Nature Ecology & Evolution,2018,2(1):50-56. |
47 | Kardol P, Cregger M A, Campany C E,et al.Soil ecosystem functioning under climate change:plant species and community effects[J].Ecology,2010,91(3):767-781. |
48 | Cardinale B J, Duffy J E, Gonzalez A,et al.Biodiversity loss and its impact on humanity[J].Nature,2012,486(7401):59-67. |
49 | Tilman D, Wedin D, Knops J.Productivity and sustainability influenced by Phylotype diversity within soil fungal functional biodiversity in grassland ecosystems[J].Nature,1996,379(6567):718-720. |
50 | Inkotte J, Bomfim B, da Silva S C,et al.Linking soil biodiversity and ecosystem function in a Neotropical savanna [J].Applied Soil Ecology,2022,169:104209. |
51 | Liu S, García-Palacios P, Tedersoo L,et al.Phylotype diversity within soil fungal functional groups drives ecosystem stability[J].Nature Ecology & Evolution,2022:1-10. |
52 | Fanin N, Moorhead D, Bertrand I.Eco-enzymatic stoichiometry and enzymatic vectors reveal differential C,N,P dynamics in decaying litter along a land-use gradient[J].Biogeochemistry,2016,129(1):21-36. |
53 | García‐Palacios P, Maestre F T, Kattge J,et al.Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes[J].Ecology letters,2013,16(8):1045-1053. |
54 | Delgado‐Baquerizo M, Eldridge D J, Ochoa V,et al.Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe[J].Ecology Letters,2017,20(10):1295-1305. |
55 | Wagg C, Bender S F, Widmer F,et al.Soil biodiversity and soil community composition determine ecosystem multifunctionality[J].Proceedings of the National Academy of Sciences,2014,111(14):5266-5270. |
56 | Falkowski P G, Fenchel T, Delong E F.The microbial engines that drive Earth's biogeochemical cycles[J].Science,2008,320(5879):1034-1039. |
57 | Fierer N.Embracing the unknown:disentangling the complexities of the soil microbiome[J].Nature Reviews Microbiology,2017,15(10):579-590. |
58 | Philippot L, Spor A, Hénault C,et al.Loss in microbial diversity affects nitrogen cycling in soil[J].The ISME Journal,2013,7(8):1609-1619. |
59 | Wang J, Wang X, Liu G,et al.Bacterial richness is negatively related to potential soil multifunctionality in a degraded alpine meadow[J].Ecological Indicators,2021,121:106996. |
60 | Loreau M, Hector A.Partitioning selection and complementarity in biodiversity experiments[J].Nature,2011,412:72-76. |
61 | Hooper D U, Chapin F S III, Ewel J J,et al.Effects of biodiversity on ecosystem functioning,a consensus of current knowledge[J].Ecological Monographs,2005,75:3-35. |
62 | Delgado-Baquerizo M, Trivedi P, Trivedi C,et al.Microbial richness and composition independently drive soil multifunctionality[J].Functional Ecology,2017,31(12):2330-2343. |
63 | Ma L, Zhang C, Xu X,et al.Different facets of bacterial and fungal communities drive soil multifunctionality in grasslands spanning a 3,500 km transect[J].Functional Ecology,36(12):3120-3133. |
64 | Li Z, Liu X, Zhang M,et al.Plant diversity and fungal richness regulate the changes in soil multifunctionality in a semi-arid grassland[J].Biology,2022,11(6):870. |
65 | Clemmensen K E, Bahr A, Ovaskainen O,et al.Roots and associated fungi drive long-term carbon sequestration in boreal forest[J].Science,2013,339(6127):1615-1618. |
66 | Clemmensen K E, Finlay R D, Dahlberg A,et al.Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests[J].New Phytologist,2015,205(4):1525-1536. |
67 | Li J, Delgado-Baquerizo M, Wang J T,et al.Fungal richness contributes to multifunctionality in boreal forest soil[J].Soil Biology and Biochemistry,2019,136:107526. |
68 | Xu H, Yu M, Cheng X.Abundant fungal and rare bacterial taxa jointly reveal soil nutrient cycling and multifunctionality in uneven-aged mixed plantations[J].Ecological Indicators,2021,129:107932. |
69 | Mahmoudi N, Caeiro M F, Mahdhi M,et al.Arbuscular mycorrhizal traits are good indicators of soil multifunctionality in drylands[J].Geoderma,2021,397:115099. |
70 | Qiao Y, Bai Y, She W,et al.Arbuscular mycorrhizal fungi outcompete fine roots in determining soil multifunctionality and microbial diversity in a desert ecosystem[J].Applied Soil Ecology,2022,171:104323. |
71 | Zhang Z, Lu Y, Wei G,et al.Rare species-driven diversity-ecosystem multifunctionality relationships are promoted by stochastic community assembly[J].mBio,2022:e0044922. |
72 | Xiong C, He J Z, Singh B K,et al.Rare taxa maintain the stability of crop mycobiomes and ecosystem functions[J].Environmental Microbiology,2021,23(4):1907-1924. |
73 | Elshahed M S, Youssef N H, Spain A M,et al.Novelty and uniqueness patterns of rare members of the soil biosphere[J].Applied and Environmental Microbiology,2008,74(17):5422-5428. |
74 | Wu Y, Chen D, Saleem M,et al.Rare soil microbial taxa regulate the negative effects of land degradation drivers on soil organic matter decomposition[J].Journal of Applied Ecology,2021,58(8):1658-1669. |
75 | Jousset A, Bienhold C, Chatzinotas A,et al.Where less may be more:how the rare biosphere pulls ecosystems strings[J].The ISME Journal,2017,11(4):853-862. |
76 | Van Den Hoogen J, Geisen S, Routh D,et al.Soil nematode abundance and functional group composition at a global scale[J].Nature,2019,572(7768):194-198. |
77 | Yeates G W.Nematodes as soil indicators:functional and biodiversity aspects[J].Biology and Fertility of Soils,2003,37:199-210. |
78 | Zhang C, Wang J, Ren Z,et al.Root traits mediate functional guilds of soil nematodes in an ex-arable field[J].Soil Biology and Biochemistry,2020,151:108038. |
79 | Gibelin A L, Déqué M.Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model[J].Climate Dynamics,2003,20(4):327-339. |
80 | Huntington T G.Evidence for intensification of the global water cycle:Review and synthesis[J].Journal of Hydrology,2006,319(1):83-95. |
81 | Meron E, Gilad E, Von Hardenberg J,et al.Vegetation patterns along a rainfall gradient[J].Chaos,Solitons & Fractals,2004,19(2):367-376. |
82 | Durán J, Delgado‐Baquerizo M, Dougill A J,et al.Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe[J].Ecology,2018,99(5):1184-1193. |
83 | Singh A K, Rai A, Banyal R,et al.Plant community regulates soil multifunctionality in a tropical dry forest[J].Ecological Indicators,2018,95:953-963. |
84 | De Vries F T, Shade A.Controls on soil microbial community stability under climate change[J].Frontiers in Microbiology,2013,4:265. |
85 | Kaisermann A, De Vries F T, Griffiths R I,et al.Legacy effects of drought on plant-soil feedbacks and plant-plant interactions[J].New Phytologist,2017,215(4):1413-1424. |
86 | Rousk J, Smith A R, Jones D L.Investigating the long-term legacy of drought and warming on the soil microbial community across five European shrubland ecosystems[J].Global Change Biology,2013,19(12):3872-3884. |
87 | Dacal M, Garcia-Palacios P, Asensio S,et al.Climate change legacies contrastingly affect the resistance and resilience of soil microbial communities and multifunctionality to extreme drought[J].Functional Ecology,2022,36:908-920. |
88 | Steinauer K, Tilman D, Wragg P D,et al.Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment[J].Ecology,2015,96(1):99-112. |
89 | Schrama M, Bardgett R D.Grassland invasibility varies with drought effects on soil functioning[J].Journal of Ecology,2016,104(5):1250-1258. |
90 | Toberman H, Evans C D, Freeman C,et al.Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland Calluna heathland[J].Soil Biology and Biochemistry,2008,40(6):1519-1532. |
91 | Lozano Y M, Aguilar-Trigueros C A, Onandia G,et al.Effects of microplastics and drought on soil ecosystem functions and multifunctionality[J].Journal of Applied Ecology,2021,58:988-996. |
92 | Vadez V.Root hydraulics:the forgotten side of roots in drought adaptation[J].Field Crops Research,2014,165:15-24. |
93 | Fowler D, Coyle M, Skiba U,et al.The global nitrogen cycle in the twenty-first century[J].Philosophical Transactions of the Royal Society B:Biological Sciences,2013,368(1621):20130164. |
94 | Galloway J N, Townsend A R, Erisman J W,et al.Transformation of the nitrogen cycle:recent trends,questions,and potential solutions[J].Science,2008,320:889-892. |
95 | Steffen W, Richardson K, Rockström J,et al.Planetary boundaries:guiding human development on a changing planet[J].Science,2015,347(6223):1259855. |
96 | Elser J J, Bracken M E S, Cleland E E,et al.Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater,marine and terrestrial ecosystems[J].Ecology Letters,2007,10:1135-1142. |
97 | Vitousek P M, Aber J D, Howarth R W,et al.Human alteration of the global nitrogen cycle:sources and consequences[J].Ecological Applications,1997,7:737-750. |
98 | Saiya-Cork K R, Sinsabaugh R L, Zak D R.The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J].Soil Biology and Biochemistry,2002,34:1309-1315. |
99 | Wei C, Yu Q, Bai E,et al.Nitrogen deposition weakens plant-microbe interactions in grassland ecosystems[J].Global Change Biology,2013,19(12):3688-3697. |
100 | Liu X, Lamb E G, Zhang S.Nitrogen addition impacts on soil microbial stoichiometry are driven by changes in plant resource stoichiometry not by the composition of main microbial groups in an alpine meadow[J].Biology and Fertility of Soils,2020,56(2):261-271. |
101 | Yuan Z, Ali A, Ruiz‐Benito P,et al.Above‐and below‐ground biodiversity jointly regulate temperate forest multifunctionality along a local‐scale environmental gradient[J].Journal of Ecology,2020,108(5):2012-2024. |
102 | Xu Z, Li M H, Zimmermann N E,et al.Plant functional diversity modulates global environmental change effects on grassland productivity[J].Journal of Ecology,2018,106(5):1941-1951. |
103 | Yuan X, Niu D, Gherardi L A,et al.Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition:evidence from a long-term grassland experiment[J].Soil Biology and Biochemistry,2019,138:107580. |
104 | Liu X, Shi X, Zhang S.Soil abiotic properties and plant functional diversity co-regulate the impacts of nitrogen addition on ecosystem multifunctionality in an alpine meadow[J].Science of the Total Environment,2021,780:146476. |
105 | Bell C, Carrillo Y, Boot C M,et al.Rhizosphere stoichiometry:are C∶N∶P ratios of plants,soils,and enzymes conserved at the plant species-level?[J].New Phytologist,2014,201(2):505-517. |
106 | Liu W, Liu L, Yang X,et al.Long-term nitrogen input alters plant and soil bacterial,but not fungal beta diversity in a semiarid grassland[J].Global Change Biology,2021,27(16):3939-3950. |
107 | Bai Y, Wu J, Clark C M,et al.Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning:evidence from Inner Mongolia grasslands[J].Globe Change Biology,2010,16:358-372. |
108 | Liu X, Zhang S.Nitrogen addition shapes soil enzyme activity patterns by changing pH rather than the composition of the plant and microbial communities in an alpine meadow soil[J].Plant and Soil,2019,440:11-24. |
109 | Cui H Y, Sun W, Delgado-Baquerizo M,et al.Phosphorus addition regulates the responses of soil multifunctionality to nitrogen over-fertilization in a temperate grassland[J].Plant and Soil,2022,473:73-87. |
110 | de Gea A B, Hautier Y, Geisen S.Interactive effects of global change drivers as determinants of the link between soil biodiversity and ecosystem functioning[J].Global Change Biology,2023,29(2):296-307. |
111 | Crain C M, Kroeker K, Halpern B S.Interactive and cumulative effects of multiple human stressors in marine systems[J].Ecology Letters,2008,11(12):1304-1315. |
112 | Shovon T A, Rozendaal D M A, Gagnon D,et al.Plant communities on nitrogen-rich soil are less sensitive to soil moisture than plant communities on nitrogen-poor soil[J].Journal of Ecology,2020,108(1):133-144. |
113 | Klaus V H, Kleinebecker T, Busch V,et al.Land use intensity,rather than plant species richness,affects the leaching risk of multiple nutrients from permanent grasslands[J].Global Change Biology,2018,24(7):2828-2840. |
114 | Ren H, Eviner V T, Gui W,et al.Livestock grazing regulates ecosystem multifunctionality in semi arid grassland[J].Functional Ecology,2018,32(12):2790-2800. |
115 | Newbold T, Hudson L N, Contu S,et al.Widespread winners and narrow-ranged losers:land use homogenizes biodiversity in local assemblages worldwide[J].PLoS Biology,2018,16(12):e2006841. |
116 | Ding L, Wang P.Afforestation suppresses soil nitrogen availability and soil multifunctionality on a subtropical grassland[J].Science of the Total Environment,2021,761:143663. |
117 | Chen K, Zhou H, Lu B,et al.Single-species artificial grasslands decrease soil multifunctionality in a temperate steppe on the Qinghai-Tibet Plateau[J].Agronomy,2021,11(11):2092. |
118 | Liu Q, Zhang Q, Jarvie S,et al.Ecosystem restoration through aerial seeding:interacting plant-soil microbiome effects on soil multifunctionality[J].Land Degradation & Development,2021,32(18):5334-5347. |
119 | Jackson R B, Caldwell M M.The scale of nutrient eeterogeneity around individual plants and its quantification with geostatistics[J].Ecology,1993,74:612-614. |
120 | Farley R A, Fitter A H.Temporal and spatial variation in soil resources in a deciduous woodland[J].Journal of Ecology,1999,87:688-696. |
121 | Zuo X A, Zhao X Y, Zhao H L,et al.Spatial pattern and heterogeneity of soil organic carbon and nitrogen in sand dunes related to vegetation change and geomorphic position in Horqin Sandy Land,Northern China [J].Environmental Monitoring and Assessment,2010,164:29-42. |
122 | Zheng Q, Hu Y, Zhang S,et al.Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity[J].Soil Biology and Biochemistry,2019,136:107521. |
123 | Ding J, Eldridge D J.Climate and plants regulate the spatial variation in soil multifunctionality across a climatic gradient[J].Catena,2021,201:105233. |
124 | Gilbert B, Macdougall A S, Kadoya T,et al.Climate and local environment structure asynchrony and the stability of primary production in grasslands[J].Global Ecology and Biogeography,2020,29:1177-1188. |
125 | 宋兆斌,辛智鸣,朱雅娟.内蒙古荒漠-草原过渡带灌木群落特征[J].中国沙漠,2022,42(2):104-112. |
126 | Rillig M C, van der Heijden M G A, Berdugo M,et al.Increasing the number of stressors reduces soil ecosystem services worldwide[J].Nature Climate Change,2023,13(5):478-483. |
127 | Yang G, Ryo M, Roy J,et al.Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms[J].Nature Communications,2022,13:4260. |
128 | Zhou X, Gu X, Smaill S J.Rethinking experiments that explore multiple global change factors[J].Trends in Ecology & Evolution,2023,38(5):399-401. |
129 | Hong P, Schmid B, Laender De F,et al.Biodiversity promotes ecosystem functioning despite environmental change[J].Ecology Letters,2022,25:555-569. |
130 | Wagg C, Schlaeppi K, Banerjee S,et al.Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J].Nature Communications,2019,10:4841. |
131 | Eisenhauer N, Hines J, Isbell F,et al.Plant diversity maintains multiple soil functions in future environments[J].Elife,2018,7:e41228. |
[1] | 黄梦真, 鲁瑞洁, 赵瑾, 马罗. 柴达木盆地典型风蚀区土壤质量评价[J]. 中国沙漠, 2023, 43(3): 199-209. |
[2] | 鲍婧婷, 孙靖尧, 王进. 生物土壤结皮中微生物群落特征综述[J]. 中国沙漠, 2022, 42(6): 33-43. |
[3] | 陈云, 李玉强, 王旭洋, 姚彩萍, 牛亚毅. 中国生态脆弱区全球变化风险及应对技术途径和主要措施[J]. 中国沙漠, 2022, 42(3): 148-158. |
[4] | 马良, 朱再春, 曾辉. NPP评估过程模型应用研究进展[J]. 中国沙漠, 2017, 37(6): 1250-1260. |
[5] | 王 芳;肖洪浪;苏永中;范桂萍. 临泽边缘绿洲区盐化草甸开垦后土壤质量演变[J]. 中国沙漠, 2011, 31(3): 723-728. |
[6] | 高天鹏. 菌根真菌对CO2浓度升高和N沉降的响应[J]. 中国沙漠, 2009, 29(1): 131-135. |
[7] | 靳鹤龄;李明启;苏志珠;董光荣;赵 晖. 220 ka以来萨拉乌苏河流域地层磁化率与气候变化[J]. 中国沙漠, 2006, 26(5): 680-686. |
[8] | 李明启;靳鹤龄;董光荣;张 洪;孙 忠. 萨拉乌苏河流域微量元素揭示的气候变化[J]. 中国沙漠, 2006, 26(2): 172-179. |
[9] | 刘树林, 王涛. 浑善达克沙地地区的气候变化特征[J]. 中国沙漠, 2005, 25(4): 557-562. |
[10] | 陈仁升, 康尔泗, 杨建平, 张济世. 内陆河流域分布式水文模型——以黑河干流山区建模为例[J]. 中国沙漠, 2004, 24(4): 416-424. |
[11] | 樊恒文, 贾晓红, 张景光, 马凤云, 李新荣. 干旱区土地退化与荒漠化对土壤碳循环的影响[J]. 中国沙漠, 2002, 22(6): 525-533. |
[12] | 杨小平. 巴丹吉林沙漠及其毗邻地区的景观类型及其形成机制初探[J]. 中国沙漠, 2000, 20(2): 166-170. |
[13] | 冯兆东, 陈发虎, 张虎才, 马玉贞. 末次冰期-间冰期蒙古高原与黄土高原对全球变化的重要贡献[J]. 中国沙漠, 2000, 20(2): 171-177. |
[14] | . 中国沙漠形成演化与气候变化研究——获中国科学院自然科学一等奖[J]. 中国沙漠, 1998, 18(4): 297-298. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
©2018中国沙漠 编辑部
地址: 兰州市天水中路8号 (730000)
电话:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn