img

官方微信

高级检索

中国沙漠 ›› 2025, Vol. 45 ›› Issue (2): 191-204.DOI: 10.7522/j.issn.1000-694X.2024.00115

• • 上一篇    

基于蒲公英优化随机森林模型的沙漠土壤Fe2O3 含量高光谱遥感反演

胡昕1(), 买买提·沙吾提1(), 张峰1, 崔锦涛1, 艾尼玩·艾买尔2, 阿斯娅·曼力克2   

  1. 1.新疆大学 地理与遥感科学学院/绿洲生态教育部重点实验室/智慧城市与环境建模自治区普通高校重点实验室/塔克拉玛干沙漠腹地绿洲过程新疆野外科学观测研究站,新疆 乌鲁木齐 830017
    2.新疆畜牧科学院 草业研究所/天山北坡草地生态环境野外定位观测研究站,新疆 乌鲁木齐 830057
  • 收稿日期:2024-07-30 修回日期:2024-12-03 出版日期:2025-03-20 发布日期:2025-03-26
  • 通讯作者: 买买提·沙吾提
  • 作者简介:胡昕(1997—),女,山西晋中人,硕士研究生,研究方向为干旱区高光谱定量反演。E-mail: 107552201144@stu.xju.edu.cn
  • 基金资助:
    新疆自然科学计划(自然科学基金)联合基金项目(2021D01C055);国家科技基础资源调查专题(2017FY101004)

Hyperspectral remote sensing estimation of Fe2O3 content in desert soil based on dandelion-optimized random forest model

Xin Hu1(), Sawut Mamat1(), Feng Zhang1, Jintao Cui1, Aimaier Ainiwan2, Manlike Asiya2   

  1. 1.College of Geography and Remote Sensing Sciences / MOE Key Laboratory of Oasis Ecology / Key Laboratory of Smart City and Environment Modelling of Higher Education Institute / Xinjiang Field Scientific Observation and Research Station for the Oasisization Process in the Hinterland of Taklamakan Desert,Xinjiang University,Urumqi 830017,China
    2.Grassland Research Institute / Field Orientation Observation and Research Station of Grassland Ecological Environment on the Northern Slope of Tianshan Mountains,Xinjiang Academy of Animal Science,Urumqi 830057,China
  • Received:2024-07-30 Revised:2024-12-03 Online:2025-03-20 Published:2025-03-26
  • Contact: Sawut Mamat

摘要:

沙漠土壤光谱与氧化铁(Fe2O3)含量之间的关系尚不明确,且缺乏有效监测方法。以新疆古尔班通古特沙漠为研究区,采集沙漠样本,获取其Fe2O3含量和光谱数据。通过对原始光谱进行分数阶微分(FOD)和连续小波变换(CWT),利用相关性分析确定了沙漠土壤Fe2O3含量的最优光谱变换形式,并采用遗传算法(GA)进行敏感波段的提取。建立了蒲公英优化随机森林(DO-RF)模型估算沙漠土壤Fe2O3含量。结果表明:(1)随着Fe2O3含量的增加,沙漠土壤的反射率逐渐降低,即沙漠土壤Fe2O3含量和土壤光谱反射率负相关;(2)FOD和CWT均可以提高沙漠土壤反射率及其Fe2O3含量反演的相关性水平。其中,基于1.2阶次的FOD和1尺度下CWT的相关性最高,相关系数分别达0.840和0.839;(3)GA能够有效剔除共线性较强的冗余波段,在1.2阶次的FOD下,从512个光谱波段中优选出31个特征波段,压缩了93.945%,在1尺度的CWT下,从119个光谱波段中优选出13个特征波段,压缩了89.076%;(4)基于CWT处理的DO-RF模型精度和稳定性最佳,模型验证决定系数(R2)达0.908,均方根误差(RMSE)为0.340,相对分析误差(RPD)为3.390,比未优化的RF、PLSR和SVM,R2分别提高了2.7%、22.6%、4%,RMSE分别降低了6.6%、27.8%、8.7%,RPD分别提高了54.9%、152.2%、68.6%。

关键词: 沙漠土壤, Fe2O3含量, 高光谱遥感, 蒲公英优化, 随机森林

Abstract:

The relationship between desert soil spectra reflectance and iron oxide (Fe2O3) content remains unclear, and effective monitoring methods are lacking. In this study, we focus on the Gurbantunggut Desert in Xinjiang, where desert soil samples were collected to obtain both Fe2O3 content and spectral data. Using fractional order differentiation (FOD) and continuous wavelet transform (CWT) to preprocess the original spectral data, we performed correlation analysis to identify the optimal spectral transformations for estimating Fe2O3 content in desert soils. Genetic algorithms (GA) were employed to extract sensitive spectral bands, and a Dandelion Optimization-based Random Forest (DO-RF) model was developed for Fe2O3 content estimation. The results indicate the following: (1) With the increase of Fe2O3 content, the reflectance of desert soil gradually decreases, showing a negative correlation between Fe2O3 content and soil spectral reflectance; (2) Both FOD and CWT can enhance the correlation between desert soil reflectance and its Fe2O3 content. Specifically, the highest correlations are achieved with FOD at the 1.2 order and CWT at a scale of 1, reaching 0.840 and 0.839 respectively; (3) GA effectively eliminates highly collinear redundant bands. Under a 1.2-order Fractional Order Derivative (FOD), it selects 31 optimal feature bands from 512 spectral bands, compressing them by 93.945%. Similarly, under a 1-scale Continuous Wavelet Transform (CWT), it identifies 13 optimal feature bands from 119 spectral bands, achieving an 89.076% compression; (4) The DO-RF model based on CWT processing exhibits the best accuracy and stability. The model validation coefficient of determination (R2) reaches 0.908, the root mean square error (RMSE) is 0.340, and the relative prediction deviation (RPD) is 3.390. Compared to the unoptimized RF, PLSR, and SVM, the R2 increases by 2.7%, 22.6%, and 4%, while the RMSE decreases by 6.6%, 27.8%, and 8.7%, and the RPD increases by 54.9%, 152.2%, and 68.6% respectively. These findings can serve as a reference for future satellite spectral remote sensing monitoring of Fe2O3 content in desert soil.

Key words: desert soil, Fe2O3 content, hyperspectral remote sensing, dandelion optimization, random forest

中图分类号: