1 |
Richter N, Jarmer T, Chabrillat S,et al.Free iron oxide determination in mediterranean soils using diffuse reflectance spectroscopy[J].Soil Science Society of America Journal,2009,73(1):72-81.
|
2 |
徐祖亮,陆晓辉,曾海莲,等.贵州典型喀斯特流域土壤氧化铁特征分异及其影响因素[J].土壤学报,2024,61(5):1284-1298.
|
3 |
蔡妙珍,邢承华.土壤氧化铁的活化与环境意义[J].浙江师范大学学报(自然科学版),2004(3):67-70.
|
4 |
刘玉晶,陆晓辉,罗丹,等.贵州喀斯特山区典型土壤氧化铁特征及其与土壤类型分异关系[J].土壤通报,2021,52(3):505-514.
|
5 |
Camargo L A, Marques J, Barron V,et al.Mapping of clay,iron oxide and adsorbed phosphate in Oxisols using diffuse reflectance spectroscopy[J].Geoderma,2015,251/252:124-132.
|
6 |
郭颖,郭治兴,刘佳,等.亚热带典型区域水稻土氧化铁高光谱反演:以珠江三角洲为例[J].应用生态学报,2017,28(11):3675-3683.
|
7 |
谭洁,陈严,周卫军,等.基于实验室高光谱数据的大围山森林土壤氧化铁全量反演[J].土壤,2021,53(4):858-864.
|
8 |
赵海龙,甘淑,袁希平,等.基于多尺度连续小波分解的土壤氧化铁反演[J].光学学报,2022,42(22):209-216.
|
9 |
何挺,王静,程烨,等.土壤氧化铁光谱特征研究[J].地理与地理信息科学,2006(2):30-34.
|
10 |
彭杰,向红英,周清,等.土壤氧化铁的高光谱响应研究[J].光谱学与光谱分析,2013,33(2):502-506.
|
11 |
阳洋,黄伟濠,卢瑛,等.土壤游离氧化铁高光谱特征与定量反演[J].华南农业大学学报,2020,41(1):91-99.
|
12 |
Xu G Q, Mcdowell N G, Li Y.A possible link between life and death of a xeric tree in desert[J].Journal of Plant Physiology,2016,194:35-44.
|
13 |
王瑾杰,丁建丽,葛翔宇,等.分数阶微分技术在机载高光谱数据估算土壤含水量中的应用[J].光谱学与光谱分析,2022,42(11):3559-3567.
|
14 |
王雪梅,玉米提·买明,黄晓宇,等.基于连续小波变换下的土壤有害元素砷含量估测[J].光谱学与光谱分析,2023,43(1):206-212.
|
15 |
Zhang S, Shen Q, Nie C,et al.Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2019,211:393-400.
|
16 |
彭咏石,陈水森,陈金月,等.基于连续小波系数的叶绿素a浓度估测模型[J].激光与光电子学进展,2021,58(8):431-439.
|
17 |
刘燕德,肖怀春,孙旭东,等.柑桔叶片黄龙病光谱特征选择及检测模型[J].农业工程学报,2018,34(3):180-187.
|
18 |
张婷婷,赵宾,杨丽明,等.基于高光谱成像技术结合SPA和GA算法测定甜玉米种子电导率[J].光谱学与光谱分析,2019,39(8):2608-2613.
|
19 |
Guo F, Xu Z, Ma H,et al.Estimating chromium concentration in arable soil based on the optimal principal components by hyperspectral data[J].Ecological Indicators,2021,133:108400.
|
20 |
Song J, Shi X, Wang H,et al.Combination of feature selection and geographical stratification increases the soil total nitrogen estimation accuracy based on vis-NIR and pXRF spectral fusion[J].Computers and Electronics in Agriculture,2024,218:108636.
|
21 |
Seema, Ghosh A K, Das B S,et al.Application of VIS-NIR spectroscopy for estimation of soil organic carbon using different spectral preprocessing techniques and multivariate methods in the middle Indo-Gangetic plains of India[J].Geoderma Regional,2020,23:e00349.
|
22 |
Li W, Xiang Y, Liu X,et al.Estimation of soil moisture content based on fractional differential and optimal spectral index[J].Agronomy,2024,14(1):184.
|
23 |
Xiao X, He Q, Ma S,et al.Environmental variables improve the accuracy of remote sensing estimation of soil organic carbon content[J].Scientific Reports,2024,14(1):18964.
|
24 |
Maynard J J, Levi M R.Hyper-temporal remote sensing for digital soil mapping:characterizing soil-vegetation response to climatic variability[J].Geoderma,2017,285:94-109.
|
25 |
Bai Y, Yang W, Wang Z,et al.Improving the estimation accuracy of soil organic matter based on the fusion of near-infrared and Raman spectroscopy using the outer-product analysis[J].Computers and Electronics in Agriculture,2024,219:108760.
|
26 |
Gao J, Meng B, Liang T,et al.Modeling alpine grassland forage phosphorus based on hyperspectral remote sensing and a multi-factor machine learning algorithm in the east of Tibetan Plateau,China[J].ISPRS Journal of Photogrammetry and Remote Sensing,2019,147:104-117.
|
27 |
Zhao S, Zhang T, Ma S,et al.Dandelion Optimizer:A nature-inspired metaheuristic algorithm for engineering applications[J].Engineering Applications of Artificial Intelligence,2022,114:105075.
|
28 |
张秋霞,张合兵,刘文锴,等.高标准基本农田建设区域土壤重金属含量的高光谱反演[J].农业工程学报,2017,33(12):230-239.
|
29 |
宁京,邹滨,涂宇龙,等.土壤As含量光谱指数反演方法评估[J].光谱学与光谱分析,2024,44(5):1472-1481.
|
30 |
聂磊超,曲柯莹,崔丽娟,等.不同粒径湿地土壤高光谱特征及碳氮磷含量反演模型研究[J].生态学报,2024,44(15):6618-6629.
|
31 |
谢鹏,王正海,肖蓓,等.基于海鸥算法优化随机森林的土壤硒含量高光谱反演[J].激光与光电子学进展,2023,60(17):370-379.
|
32 |
Tan J, Ding J, Wang Z,et al.Estimating soil salinity in mulched cotton fields using UAV-based hyperspectral remote sensing and a seagull optimization algorithm-enhanced random forest model[J].Computers and Electronics in Agriculture,2024,221:109017.
|
33 |
赵启东,葛翔宇,丁建丽,等.结合分数阶微分技术与机器学习算法的土壤有机碳含量光谱估测[J].激光与光电子学进展,2020,57(15):253-261.
|
34 |
张俊华,尚天浩,陈睿华,等.基于光谱FOD与优化指数的银川平原土壤有机质含量反演[J].农业机械学报,2022,53(11):379-387.
|
35 |
叶淼,朱琳,刘旭东,等.基于连续小波变换、SHAP和XGBoost的土壤有机质含量高光谱反演[J].环境科学,2024,45(4):2280-2291.
|
36 |
Das B, Chakraborty D, Singh V K,et al.Partial least square regression based machine learning models for soil organic carbon prediction using visible-near infrared spectroscopy[J].Geoderma Regional,2023,33:e00628.
|
37 |
Shi L, O'rourke S D E, Santana F B,et al.Prediction of soil bulk density in agricultural soils using mid-infrared spectroscopy[J].Geoderma,2023,434:116487.
|
38 |
玉米提·买明,王雪梅.连续小波变换的土壤有机质含量高光谱估测[J].光谱学与光谱分析,2022,42(4):1278-1284.
|
39 |
Tan K, Wang H, Chen L,et al.Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest[J].Journal of Hazardous Materials,2020,382:120987.
|
40 |
刘靖宇,李若怡,梁永春,等.基于特征优选和机器学习的塔里木盆地东缘绿洲土壤镉元素含量预测及健康风险评价[J].环境科学,2024,45(8):4802-4811.
|
41 |
田雨欣,王正海,谢鹏.基于特征筛选结合PSO-BPNN和GA-BPNN算法的土壤重金属高光谱定量反演[J].遥感技术与应用,2024,39(1):259-268.
|
42 |
Tasan M, Demir Y, Tasan S,et al.Comparative analysis of different machine learning algorithms for predicting trace metal concentrations in soils under intensive paddy cultivation[J].Computers and Electronics in Agriculture,2024,219:108772.
|