img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
沙漠与沙漠化

青藏铁路错那湖段风沙活动强度特征分析

  • 殷代英 ,
  • 屈建军 ,
  • 韩庆杰 ,
  • 李 毅 ,
  • 安志山 ,
  • 李建国 ,
  • 谭立海
展开
  • 中国科学院寒区旱区环境与工程研究所 敦煌戈壁荒漠生态与环境研究站/甘肃省风沙灾害防治工程技术研究中心, 甘肃 兰州 730000

收稿日期: 2012-08-07

  修回日期: 2012-10-19

  网络出版日期: 2013-01-20

Wind-blown Sand Activity Intensity in Cuonahu Lake Section of Qinghai-Tibet Railway

  • YIN Dai-ying ,
  • QU Jian-jun ,
  • HAN Qing-jie ,
  • LI Yi ,
  • AN Zhi-shan ,
  • LI Jian-guo ,
  • TAN Li-hai
Expand
  • Dunhuang Gobi and Desert Ecology and Environment Research Station/Gansu Center for Sand Hazard Reduction Engineering and Technology, Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

Received date: 2012-08-07

  Revised date: 2012-10-19

  Online published: 2013-01-20

摘要

输沙势和输沙量是反映风沙活动强度的两个重要指标。 利用青藏高原错那湖2009年7月—2010年6月的风速资料,统计并计算起沙风频次和输沙势。分析结果表明,起沙风的月际变化比较明显,10月至翌年4月风向单一,以西风为主,约占全年起沙风的65%以上。从10月到翌年4月输沙势值较高,合成输沙方向以西风为主,方向变率指数在0.9以上,属于高比率。5月到9月输沙势值处于年内低峰,风向比较分散,方向变率指数由5月的0.61降到9月的0.36,属于中比率。年输沙势为491.12 VU,属于高能环境(≥400 VU)。年合成输沙势为445.44 VU,年方向变率为0.91,属于高比率,合成输沙方向为262.54°。对8个方位月输沙量分析显示,月输沙量变化在10.5 kg(7月)~119.7 kg(11月)之间,各月输沙量随输沙势和平均风速的增加而增加,其转化关系可以用近似幂函数和线性函数表达。

本文引用格式

殷代英 , 屈建军 , 韩庆杰 , 李 毅 , 安志山 , 李建国 , 谭立海 . 青藏铁路错那湖段风沙活动强度特征分析[J]. 中国沙漠, 2013 , 33(1) : 9 -15 . DOI: 10.7522/j.issn.1000-694X.2013.00002

Abstract

Sand drift potential (DP) and sand transport amount are two important indices to reflect wind-blown sand activity intensity. The recorded wind data in Cuonahu Lake section of Qinghai-Tibet Railway from July 2009 to June 2010 are used to analyze the characteristics of sand-moving wind and to calculate DP. Results reveal that the change of sand-moving wind is obvious in different months, and west wind is the main wind direction from October to April of the following year, which accounts for more than 65% of the sand-moving wind frequency. From October to April of the following year, DP is high and the resultant drift direction (RDD) is west wind, and the direction variability rate is above 0.9. From May to September, DP is low and wind directions are scattered, and the direction variability rate drops from 0.61 in May to 0.36 in September. The yearly drift potential in Cuonahu Lake is 491.12 VU, so it has high wind energy (≥400 VU). The resultant drift potential is 445.44 VU and the yearly direction variability rate (RDP/DP) is 0.91 with RDD of 262.54°. The monthly sand transport amounts range from 10.5 kg in July to 119.7 kg in November. The monthly sand transport amount increases with DP and mean wind velocity, and there is a power function relationship between monthly sand transport amount and monthly drift potential, and there is a linear relationship between monthly sand transport amount and mean monthly wind velocity.

参考文献

[1]吴正.风沙地貌与治沙工程学[M].北京:科学出版社,2003: 418-420.



[2]孙遇祺,马骥.铁路公路沙害防治[M].北京:中国铁道出版社,1998:210-213.



[3]邱青云,魏庆朝,吴西良.青藏铁路唐拉段地质灾害的评价分析[J].中国安全科学学报,2004,14(5):3-5.



[4]孟祥连.青藏铁路施工中的主要工程地质问题及处理方法[J].铁道工程学报,2006(4):1-5.



[5]张克存,牛清河,屈建军,等.青藏铁路沱沱河路段风沙危害特征及其动力环境分析[J].中国沙漠,2010,30(5):1006-1011.



[6]南卓铜,李述训,程国栋.未来50与100 a青藏高原多年冻土变化情景预测[J].中国科学(D辑),2004,34(6):528-534.



[7]刘铁良,阳昌秀.不易沙埋的铁路路基断面形式问题[J].中国沙漠,1984,4(1):31-37.



[8]钱征宇.中国沙漠铁路的风沙危害及其防治技术[J].中国铁路,2003(10):24-26.



[9]曹玉新,李西亚,严学斌,等.青藏铁路路基沙害防治技术[J].铁道建筑技术,2003(S1):32-34.



[10]段青龙.青藏铁路错那湖活动沙丘的形成机制及治理措施[J].岩土工程技术,2002(6):311-314.



[11]程昊,陈泽昊.青藏铁路建设对荒漠地区生态影响分析及环保恢复措施[J].铁道劳动安全卫生与环保,2003,30(1):20-23.



[12]蔺全林.青藏线错那湖沿岸风沙的形成机制及治理措施[J].科技交流,2006,36(4):191-195.



[13]牛清河,屈建军,张克存,等.青藏铁路典型路段风沙灾害现状与机械防沙效益估算[J].中国沙漠,2009,29(4):596-603.



[14]张克存,牛清河,屈建军,等.青藏铁路沱沱河路段流场特征及沙害形成机理[J].干旱区研究,2010,27(2):303-308.



[15]孙永宁,王进昌,韩庆杰,等.青藏铁路格尔木至安多段沿线高寒植被、土壤特性与人工植被恢复研究[J].中国沙漠,2011,31(4):1-12.



[16]杨印海,蒋富强,王锡来,等.青藏铁路错那湖段沙害防治措施研究[J].中国沙漠,2010,30(6):1256-1262.



[17]张登山,高尚玉.青海高原沙漠化研究进展[J].中国沙漠,2007,27(3):367-372.



[18]Fyberger S G.Dune forms and wind regime[M]//McKee E D.A Study of Clobal Sand Seas.USGS Professional Paper1502.Washington D C:US Geological Survey and United States National Aeronautics and Space Administration,1979:137-169.



[19]Bagnold R A.风沙和荒漠沙丘物理学[M].钱宁,林秉南译.北京:科学出版社,1959:65.



 [20]陈广庭,冯起.塔里木盆地沙漠石油公路沿线风沙环境的形成与演变[M].北京:中国环境科学出版社,1997:112-130.



[21]陈渭南,董治宝,杨佐涛,等.塔克拉玛干沙漠的起沙风速[J].地理学报,1995,50(4):360-367.



[22]Bullard J E.A note on the use of the ‘fryberger method’ for evaluating potential sand transport by wind[J].Journal of Sedimentary Research,1997,67:499-501.



[23]Lancaster N.Wind and sand movement in the Namib sand sea[J].Earth Surface Processes and Landforms,1985,10:607-619.



[24]Livingstone I,Warren A.Aeolian Geomorphology:An Introduction[M].London:Addison Wesley Longman Limited,1996:22-23.



[25]俎瑞平,张克存,屈建军.塔克拉玛干沙漠风沙活动强度特征[J].地理研究,2005,24(5):699-707.



[26]张正偲,董治宝,赵爱国.输沙量与输沙势的关系[J].中国沙漠,2011,31(4):824-827.

文章导航

/