矿业废弃地先锋植物盐生草在镍、铜处理下抗氧化酶系统的变化
收稿日期: 2012-10-20
修回日期: 2012-12-10
网络出版日期: 2013-01-20
Impact of Single Ni and Cu Treatment on Activities of Antioxidative Enzymes of Halogeton glomeratus, A Pioneer Plant Growing in Ni/Cu Mining Wasteland
Received date: 2012-10-20
Revised date: 2012-12-10
Online published: 2013-01-20
采用温室盆栽法,研究镍(Ni)、铜(Cu)单一处理(0、50、100、200、400 mg·kg-1)对金昌Ni/Cu尾矿库先锋植物盐生草(Halogeton glomeratus)幼苗Ni、Cu积累、膜脂过氧化程度与抗氧化酶系统的影响。结果表明:盐生草幼苗叶片及根部Ni、Cu含量随土壤中Ni、Cu含量的增加而增加,Ni、Cu含量以根部含量为高;叶片及根部丙二醛(MDA)含量随Ni、Cu处理浓度升高显著增加,膜脂过氧化程度加剧;Ni胁迫下盐生草叶片中仅抗坏血酸酶(APX)活性随Ni浓度增加总体呈增加趋势,在对抗Ni胁迫引起的氧化胁迫方面发挥着主要作用,根部超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、APX和谷胱甘肽还原酶(GR)活性随Ni浓度增加呈上升趋势,在减轻Ni胁迫引起的氧化损伤方面起着重要作用;Cu胁迫下盐生草叶片SOD和APX活性较对照有所增强,在减弱Cu胁迫引起的氧化损伤方面发挥着一定作用,根部上述5种抗氧化酶活性随Cu浓度增加总体呈增加趋势,在缓解Cu胁迫引起的氧化损伤方面发挥着重要作用。
鲁 艳1 , 李新荣2 , 何明珠2 , 赵 昕2 , 李小军2 , 王 进2 , 曾凡江1 . 矿业废弃地先锋植物盐生草在镍、铜处理下抗氧化酶系统的变化[J]. 中国沙漠, 2013 , 33(1) : 118 -125 . DOI: 10.7522/j.issn.1000-694X.2013.00017
Halogeton glomeratus seedlings planted in plastic pots in a greenhouse were treated separately with NiSO4·5H2O and CuSO4·6H2O solutions at 0, 50, 100, 200, and 400 mg·kg-1 concentration levels (computed with single Ni or Cu element). Impacts of the treatments on Ni, Cu accumulation, lipid peroxidation and antioxidative enzymes system in the roots and leaves of H. glomeratus were examined. The results showed that: ① The Ni, Cu contents in the leaves and roots of H. glomeratus both increased in a dose-dependent manner, and more in roots; ② The Malondialdehyde (MDA) contents significantly increased in leaves and roots of H. glomeratus with increasing Ni and Cu concentrations, indicating a lipid peroxidation aggravation; ③ In the leaves of H. glomeratus, only ascorbate peroxidase (APX) activity increased with increasing Ni concentrations, indicating that APX could contribute to protection against Ni induced oxidative stress. While in the roots of H. glomeratus, the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), APX, and glutathione reductase (GR) enhanced with increasing Ni concentrations, suggesting that they played important roles in weakening Ni induced oxidative damages; ④ Under Cu stress, the activities of SOD and APX in leaves of H. glomeratus ascended compared with control level, and they could be effective in lessening Cu induced oxidative damage; ⑤ In the roots of H. glomeratus, as a whole, the five antioxidative enzymes activities increased with increasing Cu concentrations, thus might protect seedlings from Cu induced oxidative damage by exerting a certain antioxidant function.
Key words: Ni; Cu; Halogeton glomeratus; antioxidative enzymes; lipid peroxidation
[1]刘小宁,马剑英,张慧文.植物修复技术在土壤重金属污染中应用的研究进展[J].中国沙漠,2009,29(5):859-865.
[2]廖晓勇,陈同斌,武斌,等.典型矿业城市的土壤重金属特征与复合污染评价——以“镍都”金昌市为例[J].地理研究,2006,25(5):843-852.
[3]Gonnelli C,Galardi F,Gabbrielli R.Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa[J].Physiologia Plantarum,2001,113:507-514.
[4]李磊,贾志清,朱雅娟,等.我国干旱区植物抗旱机理研究进展[J].中国沙漠,2010,30(5):1053-1059.
[5]刘玉冰,李新荣,周生荟,等.3种不同生境芦苇叶表皮微形态和叶绿体结构特征分析[J].中国沙漠,2011,31(4):873-877.
[6]黄海霞,王刚,陈年来.荒漠灌木逆境适应性研究进展[J].中国沙漠,2010,30(5):1060-1067.
[7]Mittler R.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7:405-410.
[8]刘玉冰,李新荣,谭会娟,等.荒漠地区两种生态型芦苇叶片的抗氧化生理特性分析[J].中国沙漠,2011,31(2):277-281.
[9]左利萍,李毅,焦健.水分梯度对不同地理种群红砂叶片生理特征比较研究[J].中国沙漠,2009,29(3):514-518.
[10]Madhava Rao K V,Sresty T V S.Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses[J].Plant Science,2000,157:113-128.
[11]Sivaci A,Sivaci E R,Skmen M.Changes in antioxidant activity,total phenolic and abscisic acid constituents in the aquatic plants Myriophyllum spicatum L.and Myriophyllum triphyllum Orchard exposed to cadmium[J].Ecotoxicology,2007,16:423-428.
[12]Gajewska E,Skodowska M.Relations between tocopherol,chlorophyll and lipid peroxides contents in shoots of Ni-treated wheat[J].Journal of Plant Physiology,2007,164:364-366.
[13]Gajewska E,Skodowska M.Differential biochemical responses of wheat shoots and roots to nickel stress:Antioxidative reactions and praline accumulation[J].Plant Growth Regulation,2008,54:179-188.
[14]Lu Y,Li X R,He M Z,et al.Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants:A perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass[J].Acta Physiologiae Plantarum,2010,32:583-590.
[15]雷冬梅,段昌群,张红叶.矿区废弃地先锋植物齿果酸模在Pb、Zn污染下抗氧化酶系统的变化[J].生态学报,2009,29(10):5417-5423.
[16]Kosugi H,Kikugawa K.Thiobarbituric acid reaction of aldehyes and oxidized lipids in glacial acetic acid[J].Lipids,1985,20:915-920.
[17]Beauchamp C,Fridovich I.Superoxide dismutase:improved assays and an assay applicable to acrylamide gels[J].Analytical Biochemistry,1971,44:276-287.
[18]Chance B,Maehly A C.Assay of catalases and peroxidases[M]//Colowick S P,Kaplan N O.Methods in Enzymology.New York:Academic Press,1955:764-775.
[19]Aebi H.Catalase in vitro[J].Methods in Enzymology,1984,105:121-126.
[20]Nakano Y,Asada K.Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J].Plant and Cell Physiology,1981,22:867-880.
[21]Smith I K,Vierheller T L,Thurne C A.Assay of glutathione reductase in crude tissue homogenates using 5,5-dithiobis (2-nitrobenzoic acid)[J].Analytical Biochemistry,1988,175:408-413.
[22]Bradford M M.A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72:248-254.
[23]Conesa H M,García G,Faz ,et al.Dynamics of metal tolerant plant communities development in mine tailings from the Cartagena-La Unin Mining District (SE Spain) and their interest for further revegetation purposes[J].Chemosphere,2007,68:1180-1185.
[24]Conesa H M,Schulin R,Nowack B.A laboratory study on revegetation and metal uptake in native plant species from neutral mine tailings[J].Water,Air,& Soil Pollution,2007,183:201-212.
[25]Mendez M O,Maier R M.Phytoremediation of mine tailings in temperate and arid environments[J].Reviews in Environmental Science and Bio-technology,2008,7:47-59.
[26]赵强,张希明.策勒戈壁盐生草种群特征的初步研究[J].干旱区研究,2003,20(3):221-225.
[27]Hodges D M,DeLong J M,Forney C F,et al.Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J].Planta,1999,207:604-611.
[28]Gajewska E,Skodowska M.Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves[J].BioMetals,2007,20:27-36.
[29]Khatun S,Ali M B,Hahn E,et al.Copper toxicity in Withania somnifera:Growth and antioxidant enzymes responses of in vitro grown plants[J].Environmental and Experimental Botany,2008,64:279-285.
[30]Bai J,Gong C M,Chen K,et al.Examination of antioxidative systems responses in the different phases of drought stress and during recovery in desert plant Reaumuria soongorica (Pall.) Maxim[J].Journal of Plant Biology,2009,52:417-425.
[31]Castelli S L,Grunberg K,Muoz N,et al.Oxidative damage and antioxidant defenses as potential indicators of salt-tolerant Cenchrus ciliaris L.genotypes[J].Flora,2010,205:622-626.
[32]Selote D S,Khanna-Chopra R.Antioxidant response of wheat roots to drought acclimation[J].Protoplasma,2010,245:153-163.
[33]Ke W S,Xiong Z T,Xie M J,et al.Accumulation,subcellular localization and ecophysiological responses to copper stress in two Daucus carota L.populations[J].Plant and Soil,2007,292:291-304.
[34]Kumar P,Tewari R K,Sharma P N.Excess nickel-induced changes in antioxidative processes in maize leaves[J].Journal of Plant Nutrition and Soil Science,2007,170:796-802.
[35]刘登义,王友保,张徐祥,等.污灌对小麦幼苗生长及活性氧代谢的影响[J].应用生态学报,2002,13(10):1319-1322.
[36]鲁艳,李新荣,何明珠,等.重金属对盐生草光合生理生长特性的影响[J].西北植物学报,2011,31(2):370-376.
[37]Kocsuy G,Galiba G,Sutka J.In vitro system to study salt and drought tolerance of wheat[J].Acta Horticulture,1991,289:235-236.
[38]Prasad S M,Dwivedi R,Zeeshan M.Growth,photosynthetic electron transport,and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress[J].Photosynthetica,2005,43:177-185.
[39]Mittler R,Vanderauwera S,Gollery M,et al.Reactive oxygen gene network of plants[J].Trends in Plant Science,2004,9:490-498.
[40]Chaoui A,Mazhoudi S,Ghorbal M H,et al.Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.)[J].Plant Science,1997,127:139-147.
[41]Jouili H,EI Ferjani E.Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess[J].Comptes Rendus Biologies,2003,326:639-644.
[42]Koricheva J,Roy S,Vranjic J A,et al.Antioxidant responses to simulated acid rain and heavy metal deposition in birch seedlings[J].Environmental Pollution,1997,95:249-258.
[43]Monferrn M V,Agudo J A,Pignata M L,et al.Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus[J].Environmental Pollution,2009,157:2570-2576.
[44]Israr M,Jewell A,Kumar D,et al.Interactive effects of lead,copper,nickel and zinc on growth,metal uptake and antioxidative metabolism of Sesbania drummondii[J].Journal of Hazardous Materials,2011,186:1520-1526.
[45]Gill S S,Tuteja N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J].Plant Physiology and Biochemistry,2010,48:909-930.
[46]Srivastava S,Mishra S,Tripathi R D,et al.Copper-induced oxidative stress and responses of antioxidants and phyochelatins in Hydrilla verticillata (L.f.) Royle[J].Aquatic Toxicology,2006,80:405-415.
/
〈 |
|
〉 |