img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
天气与气候

基于CALIPSO星载激光雷达的中国沙尘气溶胶观测

  • 徐成鹏 ,
  • 葛觐铭 ,
  • 黄建平 ,
  • 付强 ,
  • 刘华悦 ,
  • 陈斌
展开
  • 兰州大学 大气科学学院/半干旱气候变化教育部重点实验室, 甘肃 兰州 730000
徐成鹏(1988-),男,安徽安庆人,硕士研究生,主要从事大气气溶胶研究。Email:xucp11@lzu.edu.cn

收稿日期: 2013-09-29

  修回日期: 2013-11-01

  网络出版日期: 2014-09-20

基金资助

国家重大科学研究计划项目(2012CB955301);国家自然科学基金项目(41105019,41275070);高等学校博士学科点专项科研基金课题(20110211120021);兰州大学中央高校基本科研业务费专项资金项目(lzujbky-2011-4,lzujbky-2009-k03)资助

Observations of Dust Aerosol over China Based on CALIPSO Spaceborne Lidar

  • Xu Chengpeng ,
  • Ge Jinming ,
  • Huang Jianping ,
  • Fu Qiang ,
  • Liu Huayue ,
  • Chen Bin
Expand
  • Ministry of Education Key Laboratory of Semi-Arid Climate Change/School of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

Received date: 2013-09-29

  Revised date: 2013-11-01

  Online published: 2014-09-20

摘要

基于2006年6月至2012年5月无云条件下CALIPSO星载激光雷达观测资料,分析中国典型地区(塔克拉玛干沙漠、柴达木盆地、戈壁区和华北)沙尘气溶胶分布。结果表明:塔克拉玛干沙漠和戈壁区为沙尘天气发生频率高值区,且前者在各高度层的沙尘发生频率都大于后者。沙尘发生呈季节性分布。塔克拉玛干沙漠在春季沙尘发生频率最大,抬升最高可至10 km,冬季频率最小,高度最低,主要分布在3 km以下。戈壁区在春季沙尘发生频率、抬升高度最大,冬季抬升高度最低,但低层发生频率大于夏、秋两季。在塔克拉玛干沙漠,沙尘光学厚度春季最大约为0.44,冬季最小约为0.17,春,冬季消光系数峰值最大,可达0.25 km-1,且随高度的递减率大于夏,秋季。在戈壁区和柴达木盆地,沙尘光学厚度春季最大、秋季最小。在华北,沙尘光学厚度春季最大、夏季最小,消光系数在2 km以上春季最大,这主要是由于春季远距离高空传输到华北的沙尘量最多。塔克拉玛干沙漠与柴达木盆地的退偏比为0.2~0.35,戈壁区为0.16~0.28,可能是由于塔克拉玛干沙漠的物质组成与柴达木盆地相同,而与戈壁区不同。华北因低层沙尘与其他气溶胶混合导致退偏振比廓线随高度递增。4个区域对流层上部退偏比全为0.2,表明高空气溶胶可能为来自相同源区的沙尘。

本文引用格式

徐成鹏 , 葛觐铭 , 黄建平 , 付强 , 刘华悦 , 陈斌 . 基于CALIPSO星载激光雷达的中国沙尘气溶胶观测[J]. 中国沙漠, 2014 , 34(5) : 1353 -1362 . DOI: 10.7522/j.issn.1000-694X.2013.00395

Abstract

CALIPSO observations under cloud-free conditions from June 2006 to May 2012 are used to derive dust aerosol distribution over China. It shows that both the Taklimakan Desert and the Gobi Desert have high dust occurrence frequency and the former is higher than the latter. There is a strong seasonal variation in dust distributions from observations. Over the Taklimakan Desert, dust occurrence frequency is largest in spring and dust can be carried as highest as to 10 km while the frequency and lifting height are smallest in winter with dust mainly being distributed under 3 km. Over the Gobi Desert, dust occurrence frequency and lifting height are largest in Spring while in Winter lifting height is smallest but the frequency in low altitudes is larger than in summer and autumn. Dust optical depth over the Taklimakan Desert reaches a maximum of 0.44 in spring and a minimum of 0.17 in winter. The peaks of extinction coefficient profiles are largest reaching up to 0.25 km-1 in spring and winter and the profiles decrease faster with increasing altitude than in Summer and autumn. Dust optical depth over the Gobi Desert and the Qaidam Basin reaches maximum in spring but minimum in Autumn. Over the North China, dust has largest optical depth in spring and smallest in Summer and dust extinction coefficient is largest above 2 km in Spring, which is mainly due to largest contents of dust through long-range transport within high altitudes. The depolarization ratio over the Taklimakan Desert and the Qaidam Basin is between 0.2 and 0.35 while 0.16-0.28 in the Gobi Desert, which may indicate that mineral composition of the Taklimakan Desert is similar with the Qaidam Basin but different with the Gobi Desert. The depolarization ratios in the upper troposphere over the four regions are all about 0.2, indicating that the aerosols in upper troposphere may be dust with the same sources.

参考文献

[1] Huang J,Minnis P,Lin B,et al.Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES[J].Geophysical Research Letters,2006,33:L06824.
[2] 夏祥鳌,王明星.气溶胶吸收及气候效应研究的新进展[J].地球科学进展,2004,19(4):630-635.
[3] 沈志宝,魏丽.我国西北大气沙尘气溶胶的辐射效应[J].大气科学,2000,24(4):541-548.
[4] Ge J,Su J,Ackerman T,et al.Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China-U.S.joint field experiment[J].Journal of Geophysical Research,2010,115:D00K12.
[5] Twomey S,Piepgrass M,Wolfe T.An assessment of the impact of pollution on global cloud albedo[J].Tellus B,1984,36:356-366.
[6] Huang J,Lin B,Minnis P,et al.Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia[J].Geophysical Research Letters,2006,33:L19802.
[7] 石广玉,王标,张华,等.大气气溶胶的辐射与气候效应[J].大气科学,2008,32(4):826-840.
[8] 申彦波,沈志宝,杜明远,等.风蚀起沙的影响因子及其变化特征[J].高原气象,2005,24(4):611-616.
[9] Kaufman Y,Koren I,Remer L,et al.Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean[J].Journal of Geophysical Research,2005,110:D10S12.
[10] Kahn R,Gaitley B,Martonchik J,et al.Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations[J].Journal of Geophysical Research,2005,110:D10S04.
[11] 张军华,毛节泰,王美华.利用TOMS资料遥感沙尘暴的研究[J].高原气象,2002,21(5):457-465.
[12] 王宏,石广玉,王标,等.中国沙漠沙尘气溶胶对沙漠源区及北太平洋地区大气辐射加热的影响[J].大气科学,2007,31(3):515-526.
[13] 段婧,毛节泰.气溶胶与云相互作用的研究进展[J].地球科学进展,2008,23(3):252-261.
[14] Huang J,Zhang W,Zuo J,et al.An overview of the semi-arid climate and environment research observatory over the Loess Plateau[J].Advances in Atmospheric Sciences,2008,25(6):906-921.
[15] Welton E,Campbell J,Spinhirne J,et al.Global monitoring of clouds and aerosols using a network of micropulse lidar systems[J].Lidar Remote Sensing for Industry and Environment Monitoring,2001,4153:151-158.
[16] 董旭辉,祈辉,任立军,等.偏振激光雷达在沙尘暴观测中的数据解析[J].环境科学研究,2007,20(2):106-111.
[17] 夏俊荣,张镭.Mie散射激光雷达探测大气气溶胶的进展[J].干旱气象,2006,24(4):68-72.
[18] Winker D,Vaughan M,Omar A,et al.Overview of the CALIPSO mission and CALIOP data processing algorithms[J].Journal of Atmospheric and Oceanic Technology,2009,26:2310-2323.
[19] Liu D,Wang Z,Liu Z,et al.A height resovled global view of dust aerosols from the first year CALIPSO lidar measurements[J].Journal of Geophysical Research,2008,113:D16214.
[20] 延昊,王长耀,牛诤,等.东亚沙尘源地、沙尘输送路径的遥感研究[J].地球科学进展,2001,21(1):90-94.
[21] 郑有飞,刘贞,刘建军,等.中国北部一次沙尘过程中沙尘气溶胶的时空分布及输送特性[J].中国沙漠,2013,33(5):1440-1452.
[22] Iwasaka Y,Minoura H,Nagaya K.The transport and spatial scale of Asian dust-storm clouds:a case study of the dust-storm event of April 1979[J].Tellus B,1983,35:189-196.
[23] 熊洁,赵天良,韩永翔,等.1995~2004年东亚沙尘气溶胶的模拟源汇分布及垂直结构[J].中国环境科学,2013,33(6):961-968.
[24] 韩永翔,赵天良,宋连春,等.北太平洋地区春季粉尘的空间分布特征-观测及模拟[J].中国环境科学,2005,25(3):257-261.
[25] Uno I,Amano H,Emori S,et al.Trans-Pacific yellow sand transport observed in April 1998:a numerical simulation[J].Journal of Geophysical Research,2001,106(D16):18331-18344.
[26] Huang J,Minnis P,Chen B,et al.Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX[J].Journal of Geophysical Research,2008,113:D23212.
[27] Tsamalis C,Ch din A,Pelon J,et al.The seasonal vertical distribution of the Saharan air layer and its modulation by the wind[J].Atmospheric Chemistry Physics Discussions,2013,13:4727-4784.
[28] Stephens G,Vane D,Boain R,et al.The CloudSat mission and the A-Train:a new dimension of space-based observations of clouds and precipitation[J].Bulletin of the American Meteorological Society,2002,83:1771-1790.
[29] Liu Z,Vaughan M,Winker D,et al.Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data[J].Journal of Geophysical Research,2004,109,D15202.
[30] Omar A,Winker D,Vaughan M,et al.The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J].Journal of Atmospheric and Oceanic Technology,2009,26:1994 2014.
[31] Yu H,Chin M,Winker D,et al.Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations:Regional and seasonal variations[J].Journal of Geophysical Research,2010,115:D00H30.
[32] Liu Z,Liu D,Huang J,et al.Airbornedust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations[J].Atmospheric Chemistry and Physics,2008,8:5045-5060.
[33] 康林,季明霞,黄建平,等.欧亚大气环流对中国北方春季沙尘天气的影响[J].中国沙漠,2013,33(5):1453-1460.
[34] 王明星,张仁健.大气气溶胶研究的前沿问题[J].气候与环境研究,2001,6(1):119-124.
[35] Tsunematsu N,Kai K,Matsumoto T.The influence of synoptic-scale air flow and local circulation on the dust layer height in the north of the Taklimakan Desert[J].Water,Air,& Soil Pollution: Focus,2005,5:175-193.
[36] Liu Z,Fairlie T,Uno I,et al.Transpacific transport and evolution of the optical properties of Asian dust[J].Journal of Quantitative Spectroscopy & Radiative Transfer,2013,116:24-33.
[37] Koffi B,Schulz M,Br on F,et al.Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models:AeroCom phase I results[J].Journal of Geophysical Research,2012,117:D10201.
[38] 齐玉磊,葛觐铭,黄建平.北方地区MODIS和MISR与AERONET气溶胶光学厚度的比较及其时空分布分析[J].科学通报,2013,58(17):1670-1679.
[39] 姚青,蔡子颖,韩素芹,等.一次沙尘过程对天津气溶胶浓度分布的影响[J].中国沙漠,2013,33(4):1138-1143.
[40] Yang W,Marshak A,Varnal T,et al.CALIPSO observations of transatlantic dust:vertical stratification and effect of clouds[J].Atmospheric Chemistry and Physics,2012,12:12051-12080.
文章导航

/