img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

油蒿(Artemisia ordosica)光系统Ⅱ光化学效率对去除降雨的响应

  • 张明艳 ,
  • 贾昕 ,
  • 查天山 ,
  • 秦树高 ,
  • 吴雅娟 ,
  • 任才
展开
  • 北京林业大学 水土保持学院/宁夏盐池毛乌素沙地生态系统国家定位观测研究站/水土保持国家林业局重点实验室, 北京 100083
张明艳(1990-),女,河北唐山人,硕士研究生,主要从事沙生植物生理生态过程研究。E-mail:1021704009@qq.com

收稿日期: 2015-12-03

  修回日期: 2016-03-01

  网络出版日期: 2017-05-20

基金资助

国家自然科学基金项目(31270755,31200537,31361130340)

PSII Photochemical Efficiency of Artemisia ordosica in Response to Rainfall Exclusion

  • Zhang Mingyan ,
  • Jia Xin ,
  • Zha Tianshan ,
  • Qin Shugao ,
  • Wu Yajuan ,
  • Ren Cai
Expand
  • School of Soil and Water Conservation/Yanchi Research Station/Key Laboratory of Soil and Water Conservation of State Forestry Administration, Beijing Forestry University, Beijing 100083, China

Received date: 2015-12-03

  Revised date: 2016-03-01

  Online published: 2017-05-20

摘要

认识植物生理特征对极端干旱的响应有助于理解和预测气候变化对生态系统过程的影响。通过对叶绿素荧光连续监测,研究了油蒿(Artemisia ordosica)光系统II(PSII)最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSII)和非光化学淬灭(NPQ)对去除降雨的响应,旨在探讨干旱环境下PSII的光保护机制。结果表明:油蒿叶片ΦPSIINPQ受光合有效辐射影响呈现出明显的日变化。与对照相比,去除降雨条件下ΦPSII降低、NPQ升高。去除降雨降低了ΦPSII对环境因子的敏感性,提高了NPQ对环境因子的敏感性。去除降雨条件下Fv/Fm的降低是由于PSII反应中心的可逆性失活。这些结果表明极端干旱影响油蒿PSII光化学效率;油蒿通过增加非辐射热耗散来抵抗干旱胁迫。

本文引用格式

张明艳 , 贾昕 , 查天山 , 秦树高 , 吴雅娟 , 任才 . 油蒿(Artemisia ordosica)光系统Ⅱ光化学效率对去除降雨的响应[J]. 中国沙漠, 2017 , 37(3) : 475 -482 . DOI: 10.7522/j.issn.1000-694X.2016.00021

Abstract

Understanding the adaptive strategy of psammophyte plants under drought stress has drawn much research attention. Artemisia ordosica is among the most important sand-fixing species in the Mu Us Sandland. We conducted continuous in situ measurements of chlorophyll fluorescence on A. ordosica under both rainfall exclusion and natural precipitation conditions to examine the response of PSII photochemical efficiency to water stress. Continuous measurements of the chlorophyll fluorescence parameters were made in August, 2013 at the Yanchi Research Station, Ningxia Hui Autonomous Region, northwest China. Chlorophyll fluorescence parameters were measured on Artemisia ordosica under both rainfall exclusion and natural precipitation conditions using a Monitoring-Pam fluorometer. Climatic variables were simultaneously measured with automated sensors. The maximum quantum yield of PSII photochemistry (Fv/Fm), photochemical efficiency (ΦPSII) and non-photochemical quenching (NPQ) were analyzed in relation to environmental factors at the hour and diel scales. Photosynthetically active radiation was the direct control over ΦPSII and NPQ at the diel scales. ΦPSII and NPQ were significantly different in different water cinditions. The sensitivity of ΦPSII to incident photosynthetically active radiation, air temperature and relative humidity was lower under rainfall exclusion than under natural rainfall, while the sensitivity of NPQ to these factors was increased by rainfall exclusion. The decrease of Fv/Fm was by the reversible inactivation of PSII reaction center. Our results indicated that drought stress strongly affects the dynamics of chlorophyll fluorescence parameters of Artemisia ordosica, which copes with harsh desert environments by adaptively increasing its thermal dissipation to avoid damages to the photosynthetic apparatus.

参考文献

[1] Dai A.Increasing drought under global warming in observations and models[J].Nature Climate Change,2013,3(1):52-58.
[2] Damberg L,AghaKouchak A.Global trends and patterns of drought from space[J].Theoretical and Applied Climatology,2014,117(3/4):441-448.
[3] 黄建平,季明霞,刘玉芝,等.干旱半干旱区气候变化研究综述[J].气候变化研究进展,2013,9(1):9-14.
[4] Taulavuori E,Tahkokorpi M,Laine K,et al.Drought tolerance of juvenile and mature leaves of a deciduous dwarf shrub Vaccinium myrtillus L. in a boreal environment[J].Protoplasma,2010,241(1/4):19-27.
[5] Flexas J,Bota J,Galmes J,et al.Keeping a positive carbon balance under adverse conditions:responses of photosynthesis and respiration to water stress[J].Physiologia Plantarum,2006,127(3):343-352.
[6] Massacci A,Nabiev S M,Pietrosanti L,et al.Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging[J].Plant Physiology and Biochemistry,2008,46(2):189-195.
[7] Lawlor D W,Cornic G.Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J].Plant,Cell and Environment,2002,25(2):275-294.
[8] Chaves M M,Flexas J,Pinheiro C.Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J].Annals of Botany,2009,103(4):551-560.
[9] Flexas J,Barón M,Bota J,et al.Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V.berlandieri V.rupestris)[J].Journal of Experimental Botany,2009,60(8):2361-2377.
[10] Lawlor D W,Tezara W.Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells:a critical evaluation of mechanisms and integration of processes[J].Annals of Botany,2009,103(4):561-579.
[11] Sperdouli I,Moustakas M.Spatio-temporal heterogeneity in Arabidopsis thaliana leaves under drought stress[J].Plant Biology,2012,14(1):118-128.
[12] Colom M R,Vazzana C.Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants[J].Environmental and Experimental Botany,2003,49(2):135-144.
[13] Maxwell K,Johnson G N.Chlorophyll fluorescence-a practical guide[J].Journal of Experimental Botany,2000,51:659-668.
[14] Woo N S,Badger M R,Pogson B J.A rapid,non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence[J].Plant Methods,2008,4(1):27.
[15] Logan B A,Adams W W,Demmig-Adams B.Viewpoint:Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions[J].Functional Plant Biology,2007,34(9):853-859.
[16] Ogaya R,Penuelas J,Asensio D,et al.Chlorophyll fluorescence responses to temperature and water availability in two co-dominant Mediterranean shrub and tree species in a long-term field experiment simulating climate change[J].Environmental and Experimental Botany,2011,73:89-93.
[17] Xu W Z,Deng X P,Xu B C,et al.Photosynthetic activity and efficiency of Bothriochloa ischaemum and Lespedeza davurica in mixtures across growth periods under water stress[J].Acta Physiologiae Plantarum,2014,36(4):1033-1044.
[18] Porcar-Castell A,Pfündel E,Korhonen J F J,et al.A new monitoring PAM fluorometer (MONI-PAM) to study the short-and long-term acclimation of photosystem Ⅱ in field conditions[J].Photosynthesis Research,2008,96(2):173-179.
[19] 张德魁,王继和,马全林,等.油蒿研究综述[J].草业科学,2007,24(8):30-35.
[20] Xiao C W,Zhou G S,Zhang X S,et al.Responses of dominant desert species Artemisia ordosica and Salix psammophila to water stress[J].Photosynthetica,2005,43(3):467-471.
[21] 周雅聃,陈世苹,宋维民,等.不同降水条件下两种荒漠植物的水分利用策略[J].植物生态学报,2011,35(8):789-800.
[22] 李思静,查天山,秦树高,等.油蒿(Artemisia ordosica)茎流动态及其环境控制因子[J].生态学杂志,2014,33(1):112-118.
[23] 吴雅娟,查天山,贾昕,等.油蒿(Artemisia ordosica)光化学量子效率和非光化学淬灭的动态及其影响因子[J].生态学杂志,2015,34(2):319-325.
[24] Wang B,Zha T S,Jia X,et al.Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem[J].Biogeosciences,2014,11(2):259-268.
[25] Porcar-Castell A.A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris[J].Physiologia Plantarum,2011,143(2):139-153.
[26] Jia X,Zha T S,Wu B,et al.Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J].Biogeosciences,2014,11(17):4679-4693.
[27] Goff J A,Gratch S.Low-pressure properties of water from-160 to 212 F[J].Transactions of the Institution of Chemical Engineers,1946,51:125-164.
[28] 张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
[29] Roháček K.Chlorophyll fluorescence parameters:the definitions,photosynthetic meaning,and mutual relationships[J].Photosynthetica,2002,40(1):13-29.
[30] Long S P,Humphries S,Falkowski P G.Photoinhibition of photosynthesis in nature[J].Annual Review of Plant Biology,1994,45(1):633-662.
[31] Murchie E H,Niyogi K K.Manipulation of photoprotection to improve plant photosynthesis[J].Plant Physiology,2011,155(1):86-92.
[32] 种培芳,李毅,苏世平.荒漠植物红砂叶绿素荧光参数日变化及其与环境因子的关系[J].中国沙漠,2010,30(3):539-545.
[33] 齐书香,马成仓,魏亚冉.内蒙古高原荒漠区几种锦鸡儿属优势植物叶绿素荧光参数的比较研究[J].天津师范大学学报:自然科学版,2009,29(4):61-66.
[34] 师生波,张怀刚,师瑞,等.青藏高原春小麦叶片光合作用的光抑制及PSII反应中心光化学效率的恢复分析[J].植物生态学报,2014,38(4):375-386.
[35] 马木木,李熙萌,石莎,等.科尔沁沙地黄柳(Salix gordejevii)光合特性[J].中国沙漠,2015,35(2):352-357.
[36] Quick W P,Stitt M.An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves[J].Biochimica et Biophysica Acta (BBA)-Bioenergetics,1989,977(3):287-296.
[37] 师生波,尚艳霞,朱鹏锦,等.不同天气类型下UV-B辐射对高山植物美丽风毛菊叶片PSII光化学效率的影响分析[J].植物生态学报,2011,35(7):741-750.
[38] Öquist G,Chow W S,Anderson J M.Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem П[J].Planta,1992,186(3):450-460
[39] Ruban A V,Murchie E H.Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching:a new approach[J].Biochimica et Biophysica Acta (BBA)-Bioenergetics,2012,1817(7):977-982.
文章导航

/