[1] Dai A.Increasing drought under global warming in observations and models[J].Nature Climate Change,2013,3(1):52-58. [2] Damberg L,AghaKouchak A.Global trends and patterns of drought from space[J].Theoretical and Applied Climatology,2014,117(3/4):441-448. [3] 黄建平,季明霞,刘玉芝,等.干旱半干旱区气候变化研究综述[J].气候变化研究进展,2013,9(1):9-14. [4] Taulavuori E,Tahkokorpi M,Laine K,et al.Drought tolerance of juvenile and mature leaves of a deciduous dwarf shrub Vaccinium myrtillus L. in a boreal environment[J].Protoplasma,2010,241(1/4):19-27. [5] Flexas J,Bota J,Galmes J,et al.Keeping a positive carbon balance under adverse conditions:responses of photosynthesis and respiration to water stress[J].Physiologia Plantarum,2006,127(3):343-352. [6] Massacci A,Nabiev S M,Pietrosanti L,et al.Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging[J].Plant Physiology and Biochemistry,2008,46(2):189-195. [7] Lawlor D W,Cornic G.Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J].Plant,Cell and Environment,2002,25(2):275-294. [8] Chaves M M,Flexas J,Pinheiro C.Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J].Annals of Botany,2009,103(4):551-560. [9] Flexas J,Barón M,Bota J,et al.Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V.berlandieri V.rupestris)[J].Journal of Experimental Botany,2009,60(8):2361-2377. [10] Lawlor D W,Tezara W.Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells:a critical evaluation of mechanisms and integration of processes[J].Annals of Botany,2009,103(4):561-579. [11] Sperdouli I,Moustakas M.Spatio-temporal heterogeneity in Arabidopsis thaliana leaves under drought stress[J].Plant Biology,2012,14(1):118-128. [12] Colom M R,Vazzana C.Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants[J].Environmental and Experimental Botany,2003,49(2):135-144. [13] Maxwell K,Johnson G N.Chlorophyll fluorescence-a practical guide[J].Journal of Experimental Botany,2000,51:659-668. [14] Woo N S,Badger M R,Pogson B J.A rapid,non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence[J].Plant Methods,2008,4(1):27. [15] Logan B A,Adams W W,Demmig-Adams B.Viewpoint:Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions[J].Functional Plant Biology,2007,34(9):853-859. [16] Ogaya R,Penuelas J,Asensio D,et al.Chlorophyll fluorescence responses to temperature and water availability in two co-dominant Mediterranean shrub and tree species in a long-term field experiment simulating climate change[J].Environmental and Experimental Botany,2011,73:89-93. [17] Xu W Z,Deng X P,Xu B C,et al.Photosynthetic activity and efficiency of Bothriochloa ischaemum and Lespedeza davurica in mixtures across growth periods under water stress[J].Acta Physiologiae Plantarum,2014,36(4):1033-1044. [18] Porcar-Castell A,Pfündel E,Korhonen J F J,et al.A new monitoring PAM fluorometer (MONI-PAM) to study the short-and long-term acclimation of photosystem Ⅱ in field conditions[J].Photosynthesis Research,2008,96(2):173-179. [19] 张德魁,王继和,马全林,等.油蒿研究综述[J].草业科学,2007,24(8):30-35. [20] Xiao C W,Zhou G S,Zhang X S,et al.Responses of dominant desert species Artemisia ordosica and Salix psammophila to water stress[J].Photosynthetica,2005,43(3):467-471. [21] 周雅聃,陈世苹,宋维民,等.不同降水条件下两种荒漠植物的水分利用策略[J].植物生态学报,2011,35(8):789-800. [22] 李思静,查天山,秦树高,等.油蒿(Artemisia ordosica)茎流动态及其环境控制因子[J].生态学杂志,2014,33(1):112-118. [23] 吴雅娟,查天山,贾昕,等.油蒿(Artemisia ordosica)光化学量子效率和非光化学淬灭的动态及其影响因子[J].生态学杂志,2015,34(2):319-325. [24] Wang B,Zha T S,Jia X,et al.Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem[J].Biogeosciences,2014,11(2):259-268. [25] Porcar-Castell A.A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris[J].Physiologia Plantarum,2011,143(2):139-153. [26] Jia X,Zha T S,Wu B,et al.Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J].Biogeosciences,2014,11(17):4679-4693. [27] Goff J A,Gratch S.Low-pressure properties of water from-160 to 212 F[J].Transactions of the Institution of Chemical Engineers,1946,51:125-164. [28] 张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448. [29] Roháček K.Chlorophyll fluorescence parameters:the definitions,photosynthetic meaning,and mutual relationships[J].Photosynthetica,2002,40(1):13-29. [30] Long S P,Humphries S,Falkowski P G.Photoinhibition of photosynthesis in nature[J].Annual Review of Plant Biology,1994,45(1):633-662. [31] Murchie E H,Niyogi K K.Manipulation of photoprotection to improve plant photosynthesis[J].Plant Physiology,2011,155(1):86-92. [32] 种培芳,李毅,苏世平.荒漠植物红砂叶绿素荧光参数日变化及其与环境因子的关系[J].中国沙漠,2010,30(3):539-545. [33] 齐书香,马成仓,魏亚冉.内蒙古高原荒漠区几种锦鸡儿属优势植物叶绿素荧光参数的比较研究[J].天津师范大学学报:自然科学版,2009,29(4):61-66. [34] 师生波,张怀刚,师瑞,等.青藏高原春小麦叶片光合作用的光抑制及PSII反应中心光化学效率的恢复分析[J].植物生态学报,2014,38(4):375-386. [35] 马木木,李熙萌,石莎,等.科尔沁沙地黄柳(Salix gordejevii)光合特性[J].中国沙漠,2015,35(2):352-357. [36] Quick W P,Stitt M.An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves[J].Biochimica et Biophysica Acta (BBA)-Bioenergetics,1989,977(3):287-296. [37] 师生波,尚艳霞,朱鹏锦,等.不同天气类型下UV-B辐射对高山植物美丽风毛菊叶片PSII光化学效率的影响分析[J].植物生态学报,2011,35(7):741-750. [38] Öquist G,Chow W S,Anderson J M.Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem П[J].Planta,1992,186(3):450-460 [39] Ruban A V,Murchie E H.Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching:a new approach[J].Biochimica et Biophysica Acta (BBA)-Bioenergetics,2012,1817(7):977-982. |