1 |
Liu M S,Cao Z M,Zhang J,et al.Short-term wind speed forecasting based on the Jaya-SVM model[J].International Journal of Electrical Power & Energy Systems,2020,121:106056.
|
2 |
王俊,李霞,周昔东,等.基于VMD和LSTM的超短期风速预测[J].电力系统保护与控制,2020,48(11):45-52.
|
3 |
张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9.
|
4 |
Liu H,Mi X W,Li Y F.Comparison of two new intelligent wind speed forecasting approaches based on wavelet packet decomposition,complete ensemble empirical mode decomposition with adaptive noise and artificial neural networks[J].Energy Conversion and Management,2018,155:188-200.
|
5 |
Dong Q L,Sun Y H,Li P Z.A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting:a case study of wind farms in China[J].Renewable Energy,2017,102:241-257.
|
6 |
Howard T,Clark P.Correction and downscaling of NWP wind speed forecasts[J].Meteorological Applications,2007,14(2):105-116.
|
7 |
黄彦辉,王龙杰,杨薛明.基于混沌时间序列的支持向量机短期风速预测模型研究[J].电测与仪表,2015,52(17):32-37.
|
8 |
李应求,安勃,李恒通.基于NARX及混沌支持向量机的短期风速预测[J].电力系统保护与控制,2019,47(23):65-73.
|
9 |
梁智,孙国强,俞娜燕,等.基于高斯过程回归和粒子滤波的短期风速预测[J].太阳能学报,2020,41(3):45-51.
|
10 |
喻敏,常毓婵,袁浩,等.基于HP-EMD和ARMA的短期风速预测[J].中国科技论文,2016,11(5):566-570.
|
11 |
孙驷洲,陈亮,郭兴众,等.基于EEMD与极限学习机的短期风速组合预测模型[J].安徽工程大学学报,2018,33(4):56-63.
|
12 |
王晨,寇鹏.基于卷积神经网络和简单循环单元集成模型的风电场内多风机风速预测[J].电工技术学报,2020:1-14.
|
13 |
Yu C J,Li Y L,Xiang H Y,et al.Data mining-assisted short-term wind speed forecasting by wavelet packet decomposition and elman neural network[J].Journal of Wind Engineering and Industrial Aerodynamics,2018,175:136-143.
|
14 |
Harbola S,Coors V.One dimensional convolutional neural network architectures for wind prediction[J].Energy Conversion and Management,2019,195:70-75.
|
15 |
Liu H,Tian H Q,Li Y F.Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms[J].Energy Conversion and Management,2015,100:16-22.
|
16 |
Hao Y,Tian C S.A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting[J].Applied Energy,2019,238:368-383.
|
17 |
Liu H,Tian H Q,Liang X F,et al.Wind speed forecasting approach using secondary decomposition algorithmn and elman neural networks[J].Applied Energy,2015,157:183-194.
|
18 |
Pei S Q,Qin H,Zhang Z,et al.Wind speed prediction method based on empirical wavelet transform and new cell update long short-term memory network[J].Energy Conversion and Management,2019,196:779-792.
|
19 |
叶瑞丽,郭志忠,刘瑞叶,等.基于小波包分解和改进Elman神经网络的风电场风速和风电功率预测[J].电工技术学报,2017,32(21):103-111.
|
20 |
王宁,罗汝斌,廖俊,等.基于小波包分解的BP神经网络的短期风速预测[J].控制与信息技术,2019(4):44-49.
|
21 |
Mi X W,Liu H,Li Y F.Wind speed forecasting method using wavelet,extreme learning machine and outlier correction algorithm[J].Energy Conversion and Management,2017,151:709-722.
|
22 |
Liu H,Yu C Q,Wu H P,et al.A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting[J].Energy,2020,202:1-36.
|
23 |
Moreno S R,Silva R G D,Mariani V C,et al.Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network[J].Energy Conversion and Management,2020,213:112869.
|
24 |
Mi X W,Liu H,Li Y F.Wind speed prediction model using singular spectrum analysis,empirical mode decomposition and convolutional support vector machine[J].Energy Conversion and Management,2019,180:196-205.
|
25 |
Feng C,Cui M J,Hodge B M,et al.A data-driven multi-model methodology with deep feature selection for short-term wind forecasting[J].Applied Energy,2017,190:1245-1257.
|
26 |
Liu H,Mi X W,Li Y F.An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm[J].Renewable Energy,2018,123:694-705.
|
27 |
Liu H,Mi X W,Li Y F.Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition,singular spectrum analysis,LSTM network and ELM[J].Energy Conversion and Management,2018,159:54-64.
|
28 |
Liu H,Mi X W,Li Y F.Smart deep learning based wind speed prediction model using wavelet packet decomposition,convolutional neural network and convolutional long short term memory network[J].Energy Conversion and Management,2018,166:120-131.
|
29 |
Ding L Y,Fang W L,Luo H B,et al.A deep hybrid learning model to detect unsafe behavior:integrating convolution neural networks and long short-term memory[J].Automation in Construction,2018,86:118-124.
|
30 |
Memarzadeh G,Keynia F.A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets[J].Energy Conversion and Management,2020,213:112824.
|
31 |
Li Y F,Shi H P,Han F Z,et al.Smart wind speed forecasting approach using various boosting algorithms,big multi-step forecasting strategy[J].Renewable Energy,2019,135:540-553.
|
32 |
Zhang Y G,Pan G F,Chen B,et al.Short-term wind speed prediction model based on GA-ANN improved by VMD[J].Renewable Energy,2020,156:1373-1388.
|
33 |
Zhang J L,Wei Y M,Tan Z F.An adaptive hybrid model for short term wind speed forecasting[J].Energy,2019,190:115615.
|
34 |
Hao Y,Tian C.A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting[J].Applied Energy,2019,238:368-383.
|
35 |
Ghimire S,Deo R C,Raj N,et al.Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms[J].Applied Energy,2019,253:113541.
|
36 |
Liu H,Mi X W,Li Y F,et al.Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis,convolutional gated recurrent unit network and support vector regression[J].Renewable Energy,2019,143:842-854.
|