img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

红砂(Reaumuria soongorica)对大气CO2浓度升高及降水变化的光合生理响应

  • 种培芳 ,
  • 姬江丽 ,
  • 李毅 ,
  • 单立山 ,
  • 苏世平
展开
  • 甘肃农业大学 林学院, 甘肃 兰州 730070
种培芳(1977-),女,甘肃永登人,教授,博士,主要从事荒漠植物的生理生态研究。E-mail:zhongpf@gsau.edu.cn

收稿日期: 2016-04-28

  修回日期: 2016-06-08

  网络出版日期: 2017-07-20

基金资助

国家自然科学基金项目(41461044,31360205,41361100)

Photosynthetic Physiology Responses to Elevated CO2 Concentration and Changing Precipitation in Desert Plant Reaumuria soongorica

  • Chong Peifang ,
  • Ji Jiangli ,
  • Li Yi ,
  • Shan Lishan ,
  • Su Shiping
Expand
  • College of Forestry, Gansu Agricultural University, Lanzhou 730070, China

Received date: 2016-04-28

  Revised date: 2016-06-08

  Online published: 2017-07-20

摘要

未来大气CO2浓度的显著升高将引起降雨格局的变化,这必将对荒漠生态系统产生严重影响。研究CO2浓度及降水变化对荒漠优势植物的影响有助于预测荒漠生态系统对全球气候变化的响应。以荒漠优势植物红砂(Reaumuria soongorica)2年生苗木为试材,采用开顶式CO2控制气室模拟CO2浓度变化(350、550、700 μmol·mol-1),研究了降水变化(-30%、-15%、0、+15%、+30%)及其与CO2的协同作用对红砂光合特性及水分利用的影响。结果表明:CO2浓度增加可显著提高红砂的光合速率,短时高浓度CO2下红砂光合能力对水分的适应性较广,在降雨增加或减少时均表现出光合速率的增加,但长时高CO2浓度会导致红砂光合能力下降,出现光合适应现象。高浓度CO2下,红砂的蒸腾速率和气孔导度均有所下降,但降水的增加可抑制这种作用,有一定的补偿作用。CO2增加会显著提高红砂的水分利用效率,降雨越少这种作用越明显,但长期CO2作用会使这种效应有所减小。由此说明,未来CO2浓度升高可在一定程度上提高红砂的光合能力,尤其是在降雨减少时因CO2增加会提高水分利用效率而增强其抗旱性,从而增强红砂对未来暖干化气候的适应能力。

本文引用格式

种培芳 , 姬江丽 , 李毅 , 单立山 , 苏世平 . 红砂(Reaumuria soongorica)对大气CO2浓度升高及降水变化的光合生理响应[J]. 中国沙漠, 2017 , 37(4) : 714 -723 . DOI: 10.7522/j.issn.1000-694X.2016.00091

Abstract

Precipitation will be changed by elevated atmospheric CO2 concentration in the future,which will seriously affect on the desert ecosystem.Our objective was to determine the interactive effects of elevated CO2 concentration and changing precipitation on photosynthetic physiology of Reaumuria soongorica which is dominant species of desert,in order to evaluate the response of desert ecosystem to future climate change.Open top chambers were used to simulate the elevated CO2 concentration (350,550,and 700 μmol·mol-1) and changing precipitation (30%,15%,0,+15%,+30%).The photosynthetic physiology indexes such as net photosynthetic rate,transpiration rate,stomatal conductance and water use efficiency of R.soongorica seedlings were measured in June,July and August.The results showed that,with increased CO2 concentration,net photosynthetic rate of R.soongorica increased obviously whether precipitation increased or decreased,which meant that the photosynthetic capacity of R.soongorica had a wide adaptability to precipitation under short elevated CO2.But photosynthetic capacity of R.soongorica decreased under long elevated CO2 and photosynthetic acclimation occurred during August.Transpiration rate and stomatal conductance decreased with increased CO2 concentration,but the results were opposite with increased precipitation because of the compensation.Wateruse efficiency increased significantly with increased CO2 concentration,especially under decreased precipitation treatment,but this reaction was smaller under long elevated CO2 than under short elevated CO2.The results suggest that at ambient CO2 levels,photosynthetic ability of R.soongorica increases with precipitation increasing,and drought resistance increases with water use efficiency increasing under decreased precipitation,which enhance the ability of R.soongorica to climate warming and rying in the future.

参考文献

[1] IPCC.Climate Change 2007:The Physical Science Basis,Summary for Policy Maker[R].IPCC WGI fourth assessment report,2007.
[2] Meehl G A,Stocker T F,Collins W D,et al.Global climate projections[M]//Solomon S,Qin D,Manning M,Chen Z,et al.Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Annual Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge,UK:Cambridge University Press,2007:747-845.
[3] Cheng W G,Sakai H,Yagi K,et al.Interaetions of elevated CO2 and night temperature on rice growth and yield[J].Agriculture and Forest Meteoroogyl,2009,149:51-58.
[4] 张学霞,杨璐璐,华开.CO2浓度对高羊茅抗旱性及水分利用效率的影响分析[J].草地学报,2015,23(3):502-509.
[5] Ainsworth E A,Rogers A.The response of photosynthesis and stomatal conductance to rising CO2:mechanisms and environmental interactions[J].Plant,Cell & Environment,2007,30:258-270.
[6] 陈威霖,江志红.全球海气耦合模式对中国区域年代际气候变化预测能力的评估[J].气候与环境研究,2012,17(1):81-91.
[7] 王澄海,李健,李小兰,等.近50 a中国降水变化的准周期性特征及未来的变化趋势[J].干旱区研究,2012,29(1):1-10.
[8] Zerihun A,Montagu K D,Hofemann M B.Patterns of below-and above-ground biomass in Eucalyptus populnea woodland communities of northeast Australia along a rainfall gradient[J].Ecosystems,2008,9(4):501-515.
[9] Bachman S,Heisler-white J L,Pendall E.Elevated carbon dioxide alters impacts of precipitation pulse on ecosystem photosymthesis and respiration in a semi arid grassland[J].Oecologia,2010,612(3):791-802.
[10] Wu F Z,Bao W K,Li F L.Effect of water stress and nitrogen supply on leaf gas exchange and fluorescence parameters of Sophora davidii seedlings[J].Photosynthetica,2008,46:40-48.
[11] 毛伟,李玉霖,孙殿超,等.养分和水分添加后沙质草地不同功能群植物地上生物量变化对群落生产力的影响[J].中国沙漠,2016,36(1):27-33.
[12] Naumburg E,Housman D C,Huxman T E,et al.Photosynthetic responses of Mojave Desert shrubs to free air CO2 enrichment are greatest during wet years[J].Global Change Biology,2003,9:276-285.
[13] 常兆丰,韩福贵,仲生年.民勤荒漠区气候变化对全球变暖的响应[J].中国沙漠,2011,31(2):505-510.
[14] 任会利,李萍,申卫军,等.荒漠生态系统对大气CO2浓度升高响应的干湿年差异[J].热带亚热带植物学报,2006,14(5):389-396.
[15] Hamerlynck E P,Huxman T E,Nowak R S.Photosynthetic responses of Larrea tridentata to a step-increase in atmospheric CO2 at the Nevada Desert FACE Facility[J].Journal of Arid Environment,2000,44:425-436.
[16] 刘玉冰,张腾国,李新荣,等.红砂(Reaumuria soongorica)忍耐极度干旱的保护机制:叶片脱落和茎中蔗糖累积[J].中国科学(C辑):生命科学,2006,36(4):328-333.
[17] 种培芳,李毅,苏世平,等.红砂3个地理种群的光合特性及其影响因素[J].生态学报,2010,30(4):914-922.
[18] 种培芳,苏世平,李毅.4个地理种群红砂的抗旱性综合评价[J].草业学报,2011,20(5):26-33.
[19] 常兆丰,韩福贵,仲生年.民勤荒漠区气候变化对全球变暖的响应[J].中国沙漠,2011,31(2):505-510.
[20] Wang R Z,Gao Q.Photosynthesis,transpiration and water use efficiency in two divergent Leymus chinensis populations from northeast China[J].Photosynthetica,2001,39:123-126.
[21] 肖强,叶文景,朱珠,等.利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法[J].生态学杂志,2005,24(6):711-714.
[22] Xu C G,Gertner G Z,Scheller R M.Potential effects of interaction between CO2 and temperature on forest landscape response to global warming[J].Global Change Biology,2007,13(7):1469-1483.
[23] Leakey A D B,Bishop K A,Ainsworth E A. A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2[J].Current Opinion in Plant Biology,2012,15(3):228-236.
[24] Morgan J A,Lecain D R,Mosier A R,et al.Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe[J].Global Change Biology,2001,7(4):451-466.
[25] Luo Y Q,Hui D F,Zhang D Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems:a meta-analysis[J].Ecology,2006,87(1):53-63.
[26] Poorter H,Pérez-Soba M.The growth response of plants to elevated CO2 under non-optimal environmental conditions[J].Oecologia,2001,129(1):1-20.
[27] Atwell B J,Henery M L,Rogers G S,et al.Canopy development and hydraulic function in eucalyptus tereticornis grown in drought in CO2-enriched atmospheres[J].Functional Plant Biology,2007,34(12):1137-1149.
[28] Xu Z Z,Zhou G S,Wang Y H.Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia[J].Plant and Soil,2007,301(1/2):87-97.
[29] Erice G,Irigoyen J J,Sánchez-Díaz M,et al.Effect of drought,elevated CO2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproot of nodulated alfalfa before and after cutting[J].Plant Science,2007,172(5):903-912.
[30] 王慧,周广胜,蒋延玲,等.降水与CO2浓度协同作用对短花针茅光合特性的影响[J].植物生态学报,2012,36(7):597-606
[31] Herrick J D,Thomas R B.Leaf senescence and lateseason net photosynthesis of sun and shade leaves ofoverstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations[J].Tree Physiology,2003,23,109-118.
[32] Madore M A,Lucas W J.Carbon Partitioning and Source-sink Interactions in Plants[J].American Society of Plant Physiologists,Rockville,USA.1995,287.
[33] Oksanen E,Riikonen J,Kaakinen S,et al.Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone[J].Global Change Biology,2005,11:732-748.
[34] 刘玉英,李卓琳,韩佳育,等.模拟降雨量变化与CO2浓度升高对羊草光合特性和生物量的影响[J].草业学报,2015,24(11):128-136.
[35] 廖建雄,王根轩.干旱、CO2和温度升高对春小麦光合、蒸发蒸腾及水分利用效率的影响[J].应用生态学报,2002,13(5):547-550.
[36] 林祥磊,许振柱,王玉辉,等.羊草(Leymus chinensis)叶片光合参数对干旱与复水的响应机理与模拟[J].生态学报,2008,22(10),4718-4724.
[37] 王建林,温学发.气孔导度对CO2浓度变化的模拟及其生理机制[J].生态学报,2010,30(17):4815-4820.
[38] Berryman C A,Eamus D,Duff G A.Stomatal responsesto a range of variables in two tropical tree species grownwith CO2 enrichment[J].Journal of Experimental Botany,1994,45,539-546.
[39] Morison J I L,GIfford R M.Stomatal sensitivity to carbondioxide and humidity:a comparison of two C3 andtwo CC4 grass species[J].Plant Physiology,1983,71,789-796.
[40] Manderscheid R,Erbs M,Weigal H J.Interactive effectsof free-air CO2 enrichment and drought stress on maizegrowth[J].European Journal of Agronomy,2014,52:11-21.
[41] Ogaya R,Pe uelas J.Comparative field study of Quercus ilex and Phillyrea latifolia:photosynthetic response toexperimental drought conditions[J].Environmental and Experimental Botany,2003,50:137-148.
[42] 蒋高明,董鸣.沿中国东北样带(NECT)分布的若干克隆植物与非克隆植物光合速率与水分利用效率的比较[J].植物学报,2000,42(8):855-861.
[43] 种培芳.荒漠植物红砂、白刺和沙拐枣抗旱指标及抗旱性综合评价研究[D].兰州:甘肃农业大学,2010.
[44] Ainsworth E A,Davey P A,Hymus G J,et al.Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term?A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under free air CO2 enrichment (FACE)[J].Plant,Cell & Environment,2003,26:705-714.
[45] Duursma R A,Barton C V M,Eamus D,et al.Rooting depth explains CO2×drought interaction in Eucalyptus saligna[J].Tree Physiology,2011,31(9):922-931.
文章导航

/