Please wait a minute...


中国沙漠  2017, Vol. 37 Issue (4): 714-723    DOI: 10.7522/j.issn.1000-694X.2016.00091
红砂(Reaumuria soongorica)对大气CO2浓度升高及降水变化的光合生理响应
种培芳, 姬江丽, 李毅, 单立山, 苏世平
甘肃农业大学 林学院, 甘肃 兰州 730070
Photosynthetic Physiology Responses to Elevated CO2 Concentration and Changing Precipitation in Desert Plant Reaumuria soongorica
Chong Peifang, Ji Jiangli, Li Yi, Shan Lishan, Su Shiping
College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
 全文: PDF(3111 KB)  
摘要: 未来大气CO2浓度的显著升高将引起降雨格局的变化,这必将对荒漠生态系统产生严重影响。研究CO2浓度及降水变化对荒漠优势植物的影响有助于预测荒漠生态系统对全球气候变化的响应。以荒漠优势植物红砂(Reaumuria soongorica)2年生苗木为试材,采用开顶式CO2控制气室模拟CO2浓度变化(350、550、700 μmol·mol-1),研究了降水变化(-30%、-15%、0、+15%、+30%)及其与CO2的协同作用对红砂光合特性及水分利用的影响。结果表明:CO2浓度增加可显著提高红砂的光合速率,短时高浓度CO2下红砂光合能力对水分的适应性较广,在降雨增加或减少时均表现出光合速率的增加,但长时高CO2浓度会导致红砂光合能力下降,出现光合适应现象。高浓度CO2下,红砂的蒸腾速率和气孔导度均有所下降,但降水的增加可抑制这种作用,有一定的补偿作用。CO2增加会显著提高红砂的水分利用效率,降雨越少这种作用越明显,但长期CO2作用会使这种效应有所减小。由此说明,未来CO2浓度升高可在一定程度上提高红砂的光合能力,尤其是在降雨减少时因CO2增加会提高水分利用效率而增强其抗旱性,从而增强红砂对未来暖干化气候的适应能力。
关键词: CO2降雨量光合生理水分利用效率红砂(Reaumuria soongorica)    
Abstract: Precipitation will be changed by elevated atmospheric CO2 concentration in the future,which will seriously affect on the desert ecosystem.Our objective was to determine the interactive effects of elevated CO2 concentration and changing precipitation on photosynthetic physiology of Reaumuria soongorica which is dominant species of desert,in order to evaluate the response of desert ecosystem to future climate change.Open top chambers were used to simulate the elevated CO2 concentration (350,550,and 700 μmol·mol-1) and changing precipitation (30%,15%,0,+15%,+30%).The photosynthetic physiology indexes such as net photosynthetic rate,transpiration rate,stomatal conductance and water use efficiency of R.soongorica seedlings were measured in June,July and August.The results showed that,with increased CO2 concentration,net photosynthetic rate of R.soongorica increased obviously whether precipitation increased or decreased,which meant that the photosynthetic capacity of R.soongorica had a wide adaptability to precipitation under short elevated CO2.But photosynthetic capacity of R.soongorica decreased under long elevated CO2 and photosynthetic acclimation occurred during August.Transpiration rate and stomatal conductance decreased with increased CO2 concentration,but the results were opposite with increased precipitation because of the compensation.Wateruse efficiency increased significantly with increased CO2 concentration,especially under decreased precipitation treatment,but this reaction was smaller under long elevated CO2 than under short elevated CO2.The results suggest that at ambient CO2 levels,photosynthetic ability of R.soongorica increases with precipitation increasing,and drought resistance increases with water use efficiency increasing under decreased precipitation,which enhance the ability of R.soongorica to climate warming and rying in the future.
Key words: CO2    precipitation    photosynthetic physiology    water use efficiency    Reaumuria soongorica
收稿日期: 2016-04-28 出版日期: 2017-07-20
ZTFLH:  Q948.11  
基金资助: 国家自然科学基金项目(41461044,31360205,41361100)
作者简介: 种培芳(1977-),女,甘肃永登人,教授,博士,主要从事荒漠植物的生理生态研究。
E-mail Alert


种培芳, 姬江丽, 李毅, 单立山, 苏世平. 红砂(Reaumuria soongorica)对大气CO2浓度升高及降水变化的光合生理响应[J]. 中国沙漠, 2017, 37(4): 714-723.

Chong Peifang, Ji Jiangli, Li Yi, Shan Lishan, Su Shiping. Photosynthetic Physiology Responses to Elevated CO2 Concentration and Changing Precipitation in Desert Plant Reaumuria soongorica. JOURNAL OF DESERT RESEARCH, 2017, 37(4): 714-723.


[1] IPCC.Climate Change 2007:The Physical Science Basis,Summary for Policy Maker[R].IPCC WGI fourth assessment report,2007.
[2] Meehl G A,Stocker T F,Collins W D,et al.Global climate projections[M]//Solomon S,Qin D,Manning M,Chen Z,et al.Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Annual Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge,UK:Cambridge University Press,2007:747-845.
[3] Cheng W G,Sakai H,Yagi K,et al.Interaetions of elevated CO2 and night temperature on rice growth and yield[J].Agriculture and Forest Meteoroogyl,2009,149:51-58.
[4] 张学霞,杨璐璐,华开.CO2浓度对高羊茅抗旱性及水分利用效率的影响分析[J].草地学报,2015,23(3):502-509.
[5] Ainsworth E A,Rogers A.The response of photosynthesis and stomatal conductance to rising CO2:mechanisms and environmental interactions[J].Plant,Cell & Environment,2007,30:258-270.
[6] 陈威霖,江志红.全球海气耦合模式对中国区域年代际气候变化预测能力的评估[J].气候与环境研究,2012,17(1):81-91.
[7] 王澄海,李健,李小兰,等.近50 a中国降水变化的准周期性特征及未来的变化趋势[J].干旱区研究,2012,29(1):1-10.
[8] Zerihun A,Montagu K D,Hofemann M B.Patterns of below-and above-ground biomass in Eucalyptus populnea woodland communities of northeast Australia along a rainfall gradient[J].Ecosystems,2008,9(4):501-515.
[9] Bachman S,Heisler-white J L,Pendall E.Elevated carbon dioxide alters impacts of precipitation pulse on ecosystem photosymthesis and respiration in a semi arid grassland[J].Oecologia,2010,612(3):791-802.
[10] Wu F Z,Bao W K,Li F L.Effect of water stress and nitrogen supply on leaf gas exchange and fluorescence parameters of Sophora davidii seedlings[J].Photosynthetica,2008,46:40-48.
[11] 毛伟,李玉霖,孙殿超,等.养分和水分添加后沙质草地不同功能群植物地上生物量变化对群落生产力的影响[J].中国沙漠,2016,36(1):27-33.
[12] Naumburg E,Housman D C,Huxman T E,et al.Photosynthetic responses of Mojave Desert shrubs to free air CO2 enrichment are greatest during wet years[J].Global Change Biology,2003,9:276-285.
[13] 常兆丰,韩福贵,仲生年.民勤荒漠区气候变化对全球变暖的响应[J].中国沙漠,2011,31(2):505-510.
[14] 任会利,李萍,申卫军,等.荒漠生态系统对大气CO2浓度升高响应的干湿年差异[J].热带亚热带植物学报,2006,14(5):389-396.
[15] Hamerlynck E P,Huxman T E,Nowak R S.Photosynthetic responses of Larrea tridentata to a step-increase in atmospheric CO2 at the Nevada Desert FACE Facility[J].Journal of Arid Environment,2000,44:425-436.
[16] 刘玉冰,张腾国,李新荣,等.红砂(Reaumuria soongorica)忍耐极度干旱的保护机制:叶片脱落和茎中蔗糖累积[J].中国科学(C辑):生命科学,2006,36(4):328-333.
[17] 种培芳,李毅,苏世平,等.红砂3个地理种群的光合特性及其影响因素[J].生态学报,2010,30(4):914-922.
[18] 种培芳,苏世平,李毅.4个地理种群红砂的抗旱性综合评价[J].草业学报,2011,20(5):26-33.
[19] 常兆丰,韩福贵,仲生年.民勤荒漠区气候变化对全球变暖的响应[J].中国沙漠,2011,31(2):505-510.
[20] Wang R Z,Gao Q.Photosynthesis,transpiration and water use efficiency in two divergent Leymus chinensis populations from northeast China[J].Photosynthetica,2001,39:123-126.
[21] 肖强,叶文景,朱珠,等.利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法[J].生态学杂志,2005,24(6):711-714.
[22] Xu C G,Gertner G Z,Scheller R M.Potential effects of interaction between CO2 and temperature on forest landscape response to global warming[J].Global Change Biology,2007,13(7):1469-1483.
[23] Leakey A D B,Bishop K A,Ainsworth E A. A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2[J].Current Opinion in Plant Biology,2012,15(3):228-236.
[24] Morgan J A,Lecain D R,Mosier A R,et al.Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe[J].Global Change Biology,2001,7(4):451-466.
[25] Luo Y Q,Hui D F,Zhang D Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems:a meta-analysis[J].Ecology,2006,87(1):53-63.
[26] Poorter H,Pérez-Soba M.The growth response of plants to elevated CO2 under non-optimal environmental conditions[J].Oecologia,2001,129(1):1-20.
[27] Atwell B J,Henery M L,Rogers G S,et al.Canopy development and hydraulic function in eucalyptus tereticornis grown in drought in CO2-enriched atmospheres[J].Functional Plant Biology,2007,34(12):1137-1149.
[28] Xu Z Z,Zhou G S,Wang Y H.Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia[J].Plant and Soil,2007,301(1/2):87-97.
[29] Erice G,Irigoyen J J,Sánchez-Díaz M,et al.Effect of drought,elevated CO2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproot of nodulated alfalfa before and after cutting[J].Plant Science,2007,172(5):903-912.
[30] 王慧,周广胜,蒋延玲,等.降水与CO2浓度协同作用对短花针茅光合特性的影响[J].植物生态学报,2012,36(7):597-606
[31] Herrick J D,Thomas R B.Leaf senescence and lateseason net photosynthesis of sun and shade leaves ofoverstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations[J].Tree Physiology,2003,23,109-118.
[32] Madore M A,Lucas W J.Carbon Partitioning and Source-sink Interactions in Plants[J].American Society of Plant Physiologists,Rockville,USA.1995,287.
[33] Oksanen E,Riikonen J,Kaakinen S,et al.Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone[J].Global Change Biology,2005,11:732-748.
[34] 刘玉英,李卓琳,韩佳育,等.模拟降雨量变化与CO2浓度升高对羊草光合特性和生物量的影响[J].草业学报,2015,24(11):128-136.
[35] 廖建雄,王根轩.干旱、CO2和温度升高对春小麦光合、蒸发蒸腾及水分利用效率的影响[J].应用生态学报,2002,13(5):547-550.
[36] 林祥磊,许振柱,王玉辉,等.羊草(Leymus chinensis)叶片光合参数对干旱与复水的响应机理与模拟[J].生态学报,2008,22(10),4718-4724.
[37] 王建林,温学发.气孔导度对CO2浓度变化的模拟及其生理机制[J].生态学报,2010,30(17):4815-4820.
[38] Berryman C A,Eamus D,Duff G A.Stomatal responsesto a range of variables in two tropical tree species grownwith CO2 enrichment[J].Journal of Experimental Botany,1994,45,539-546.
[39] Morison J I L,GIfford R M.Stomatal sensitivity to carbondioxide and humidity:a comparison of two C3 andtwo CC4 grass species[J].Plant Physiology,1983,71,789-796.
[40] Manderscheid R,Erbs M,Weigal H J.Interactive effectsof free-air CO2 enrichment and drought stress on maizegrowth[J].European Journal of Agronomy,2014,52:11-21.
[41] Ogaya R,Pe uelas J.Comparative field study of Quercus ilex and Phillyrea latifolia:photosynthetic response toexperimental drought conditions[J].Environmental and Experimental Botany,2003,50:137-148.
[42] 蒋高明,董鸣.沿中国东北样带(NECT)分布的若干克隆植物与非克隆植物光合速率与水分利用效率的比较[J].植物学报,2000,42(8):855-861.
[43] 种培芳.荒漠植物红砂、白刺和沙拐枣抗旱指标及抗旱性综合评价研究[D].兰州:甘肃农业大学,2010.
[44] Ainsworth E A,Davey P A,Hymus G J,et al.Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term?A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under free air CO2 enrichment (FACE)[J].Plant,Cell & Environment,2003,26:705-714.
[45] Duursma R A,Barton C V M,Eamus D,et al.Rooting depth explains CO2×drought interaction in Eucalyptus saligna[J].Tree Physiology,2011,31(9):922-931.
[1] 金艳霞, 王新平, 张亚峰, 潘颜霞, 虎瑞, 徐浩杰, 石薇. 红砂(Reaumuria soongorica)、珍珠(Salsola passerine)蒸腾耗水规律的尺度整合[J]. 中国沙漠, 2018, 38(2): 286-293.
[2] 冯云格, 王斌杰, 陈菁菁, 孙小妹, 陈年来. 日光温室香瓜茄(Solanum murcatum)叶片光合特性[J]. 中国沙漠, 2017, 37(5): 925-932.
[3] 曲浩, 赵哈林, 石永强, 高宝兰, 李莹, 姬明飞, 乌仁高娃, 李英. 沙埋对科尔沁沙地两种主要作物存活的影响及其光合生理响应[J]. 中国沙漠, 2017, 37(4): 698-704.
[4] 刘丹, 刘玉冰, 张雯莉. 红砂(Reaumuria soongorica)响应干旱和UV-B辐射双重胁迫的基因转录表达[J]. 中国沙漠, 2017, 37(4): 705-713.
[5] 李肖娟, 张福平, 王虎威, 雷声剑, 高张. 黑河流域植被水分利用效率时空变化特征及其与气候因子的关系[J]. 中国沙漠, 2017, 37(4): 733-741.
[6] 代景忠, 闫瑞瑞, 卫智军, 乌仁其其格, 辛晓平, 刘文亭. 施肥对羊草(Leymus chinensis)割草场功能群物种丰富度和重要值的影响[J]. 中国沙漠, 2017, 37(3): 453-461.
[7] 赵哈林, 李瑾, 周瑞莲, 云建英, 冯静, 苏娜. 风沙流短暂吹袭对樟子松(Pinus sylvestris var. mongolica)幼苗光合蒸腾特性的影响[J]. 中国沙漠, 2017, 37(2): 254-260.
[8] 朱雅娟, 赵雪彬, 刘艳书, 李蕴, 范文秀. 青海共和盆地沙柳(Salix psammophila)和乌柳(Salix cheilophila)的水分利用过程[J]. 中国沙漠, 2017, 37(2): 281-287.
[9] 曹生奎, 曹广超, 陈克龙, 冯起, 李忠勤, 张静, 汉光昭, 林阳阳. 青海湖高寒湿地生态系统CO2通量和水汽通量间的耦合关系[J]. 中国沙漠, 2016, 36(5): 1286-1295.
[10] 刘树敏, 杨九艳, 清华, 宋雪梅, 韩风林. 内蒙古荒漠区红砂(Reaumuria soongorica)种群格局[J]. 中国沙漠, 2016, 36(5): 1331-1339.
[11] 赵洋, 赵怀勇, 张红菊, 柴强. 荒漠绿洲区间作和密植对作物产量和水分利用效率的影响[J]. 中国沙漠, 2016, 36(3): 681-687.
[12] 鲍婧婷, 王进, 苏洁琼. 不同林龄柠条(Caragana korshinskii)的光合特性和水分利用特征[J]. 中国沙漠, 2016, 36(1): 199-205.
[13] 马赟花, 张铜会, 刘新平, 毛伟, 岳祥飞. 极端降水事件对科尔沁沙地一年生植被的影响[J]. 中国沙漠, 2016, 36(1): 50-56.
[14] 毛新安, 赵哈林, 李瑾, 周瑞莲, 云建英, 曲浩, 潘成臣. 樟子松(Pinus sylvestnis var. mongolica)幼苗对持续风吹的光合生理响应[J]. 中国沙漠, 2016, 36(1): 64-70.
[15] 法科宇, 张宇清, 刘加彬, 吴斌, 秦树高, 刘振. 土壤非生物CO2通量对土壤温度的响应[J]. 中国沙漠, 2015, 35(6): 1628-1635.