Please wait a minute...
img

官方微信

高级检索
中国沙漠  2018, Vol. 38 Issue (4): 765-771    DOI: 10.7522/j.issn.1000-694X.2017.00049
生物与土壤     
胡杨(Populus euphratica)叶片结构与功能关系
潘莹萍1,2, 陈亚鹏2, 王怀军1,2, 任志国3
1. 淮阴师范学院 城市与环境学院, 江苏 淮安 223300;
2. 中国科学院新疆生态与地理研究所 荒漠与绿洲生态国家重点实验室, 新疆 乌鲁木齐 830011;
3. 中国科学院寒区旱区环境与工程研究所 黑河遥感试验研究站, 甘肃 兰州 730000
Leaf Structure and Functional Traits of Populus euphratica
Pan Yingping1,2, Chen Yapeng2, Wang Huaijun1,2, Ren Zhiguo3
1. School of Urban and Environmental Science, Huaiyin Normal University, Huaian 223300, Jiangsu, China;
2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
3. Heihe Remote Sensing Experimental Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
 全文: PDF(1283 KB)  
摘要: 叶片形态特征与功能性状可以反映植物采取的协同或权衡策略。测定了塔里木河下游不同地下水埋深下荒漠河岸林建群种胡杨(Populus euphratica)的叶片解剖结构、叶片水力导度、叶片δ13C值,探讨了胡杨结构性状指标和功能指标对地下水埋深的响应,叶片水力传输能力与叶片解剖结构变化趋势,以及叶片水力参数、解剖结构与水分利用效率的相关关系。结果表明:(1)胡杨叶片结构指标(叶片厚度、表皮厚度、栅栏组织厚度、气孔参数、叶脉密度、主脉导管直径)、功能指标(叶片最大水力导度、水分利用效率、比叶质量)在地下水埋深最深处与地下水埋深最浅处差异显著;(2)不同地下水埋深下胡杨水分传输能力变化有解剖结构基础,叶片水分传输能力与水分散失能力存在协同关系;(3)胡杨叶片水分利用效率与叶片解剖结构指标(叶片厚度、栅栏组织厚度、表皮厚度、气孔长度、气孔宽度、气孔密度)具有相关关系;(4)胡杨叶片水分传输与叶片碳投资具有协同关系。
关键词: 叶片水力参数叶片解剖结构水分利用效率胡杨(Populus euphratica)    
Abstract: Leaf morphological and functional traits reflect the trade-off or coordinate strategies adopted by plants when they adapt to environmental stress. The study was conducted on Populus euphratica the constructive species of the riparian forest in the lower reaches of Tarim River.We measured leaf anatomical traits, leaf hydraulic conductance, δ13C values of P.euphratica grown at different groundwater depths, discussing how morphological and functional traits response to variation in groundwater depth. We also assessed the variation trend between hydraulic conductance capacity and anatomical structure, as well as analyzed the correlations between leaf hydraulic parameters, anatomical traits and water use efficiency. The results showed that:(1) Leaf anatomical traits (leaf thickness,epidermal thickness, palisade tissue thickness,stomatal parameters,vein density, main vein diameter) and functional traits (maximum leaf hydraulic conductance, water use efficiency, leaf mass per area) changed significantly in the deepest groundwater depth compared with them in the shallowest groundwater depth. (2) The variation in water transport capacity of P.euphratica under different groundwater depths has its anatomical structure basis;there was a coordinate relationship between leaf water transport and water loss. (3) Correlations were found between leaf anatomical traits (leaf thickness,palisade tissue thickness, epidermal thickness,stomatal length, stomatal width, stomatal density) and water use efficiency. (4) Co-ordinate relationship existed between leaf water transport and carbon investment.
Key words: leaf hydraulic traits    leaf anatomical structure    water use efficiency    Populus euphratica
收稿日期: 2016-11-02 出版日期: 2018-11-06
ZTFLH:  Q944.3  
基金资助: 国家自然科学基金项目(41371515);中国科学院"率先行动"计划课题(TSS-2015-014-FW-2-3);江苏省高校自然科学研究面上项目(16KJB170001)
通讯作者: 陈亚鹏(E-mail:chenyp@ms.xjb.ac.cn)     E-mail: chenyp@ms.xjb.ac.cn
作者简介: 潘莹萍(1989-),女,江苏扬州人,硕士,助理实验员,主要从事荒漠植物生理生态研究。E-mail:wspyp19891213@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
潘莹萍
陈亚鹏
王怀军
任志国

引用本文:

潘莹萍, 陈亚鹏, 王怀军, 任志国. 胡杨(Populus euphratica)叶片结构与功能关系[J]. 中国沙漠, 2018, 38(4): 765-771.

Pan Yingping, Chen Yapeng, Wang Huaijun, Ren Zhiguo. Leaf Structure and Functional Traits of Populus euphratica. Journal of Desert Research, 2018, 38(4): 765-771.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2017.00049        http://www.desert.ac.cn/CN/Y2018/V38/I4/765

[1] Zhu S D,Chen Y J,Cao K F,et al.Interspecific variation in branch and leaf traits among three syzygium tree species from different successional tropical forests[J].Functional Plant Biology,2015,42(4):423-432.
[2] 朱媛君,杨劼,万俊华,等.毛乌素沙地丘间低地主要植物叶片性状及其相互关系[J] 中国沙漠,2015,35(6):1496-1504.
[3] 冯秋红,史作民,董莉莉.植物功能性状对环境的响应及其应用[J].林业科学,2008,44(4):125-131.
[4] 毛伟,李玉霖,张铜会,等.不同尺度生态学中植物叶性状研究概述[J].中国沙漠,2012,32(1):33-41.
[5] 孙善文,章永江,曹坤芳.热带季雨林不同小生境大戟科植物幼树的叶片结构、耐旱性和光合能力之间的相关性[J].植物生态学报,2014,38(4):311-324.
[6] Blackman C J,Aspinwall M J,Dios V R D,et al.Leaf photosynthetic,economics and hydraulic traits are decoupled among genotypes of a widespread species of eucalypt grown under ambient and elevated CO2[J].Functional Ecology,2016,30(9):1491-1500.
[7] Li L,Mccormack M L,Ma C,et al.Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests[J].Ecology Letters,2015,18(9):899-906.
[8] Sack L,Holbrook N M.Leaf hydraulics[J].Annual Review of Plant Biology,2006,57:361-381.
[9] Blackman C J,Brodribb T J,Jordan G J.Leaf hydraulics and drought stress:response,recovery and survivorship in four woody temperate plant species[J].Plant,Cell & Environment,2009,32:1584-1595.
[10] Nardini A,Pedà G,Rocca N L.Trade-offs between leaf hydraulic capacity and drought vulnerability:morpho-anatomical bases,carbon costs and ecological consequences[J].New Phytologist,2012,196:788-798.
[11] Scoffoni C,Chatelet D S,Pasquet-Kok J,et al.Hydraulic basis for the evolution of photosynthetic productivity[J].Nature Plants,2016,2(6):16072.
[12] Blackman C J,Brodribb T J,Jordan G J.Leaf hydraulics and drought stress:response,recovery and survivorship in four woody temperate plant species[J].Plant,Cell & Environment,2009,32:1584-1595.
[13] Franks P J,Drake P L,Beerling D J.Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size anddensity:an analysis using Eucalyptus globules[J].Plant,Cell & Environment,2009,32:1737-1748.
[14] Zhang S B,Guan Z J,Sun M,et al.Evolutionary association of stomatal traits with leaf vein density in paphiopedilum,orchidaceae[J].Plos One,2012,7:e40080.
[15] Bacelar E A,Correia C M,Moutinho-Pereira J M,et al.Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions[J].Tree Physiology,2004,24:233-239.
[16] 张海娜,苏培玺,李善家,等.荒漠区植物光合器官解剖结构对水分利用效率的指示作用[J].生态学报,2013,33(16):4909-4918.
[17] 丁伟,杨振华,张世彪,等.青海柴达木地区野生胡杨叶的形态解剖学研究[J].中国沙漠,2010,30(6),1411-1415.
[18] Silva H,Sagardia S,Ortiz M,et al.Relationships between leaf anatomy,morphology,and water use efficiency in aloe vera,(l) burm f.as a function of water availability[J].Revista Chilena De Historia Natural,2014,87(1):1-10.
[19] Scafaro A P,Caemmerer S V,Evans J R,et al.Temperature response of mesophyll conductance in cultivated and wild oryza species withcontrasting mesophyll cell wall thickness[J].Plant Cell & Environment,2011,34:1999-2008.
[20] Warren C R.Stand aside stomata,another actor deserves centre stage:the forgotten role of the internal conductance to CO2 transfer[J].Journal of Experimental Botany,2008,59(59):1475-1487.
[21] Richards R A,Rebetzke G J,Condon A G,et al.Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals[J].Crop Science,2002,42(1):111-121.
[22] Brodribb T J,Holbrook N M,Zwieniecki M A,et al.Leaf hydraulic capacity in ferns,conifers and angiosperms:impacts on photosynthetic maxima[J].New Phytologist,2005,165:839-846.
[23] Brodribb T J,Feild T S,Jordan G J.Leaf maximum photosynthetic rate and venation are linked by hydraulics[J].Plant Physiology,2007,144:1890-1898.
[24] 吴桂林,蒋少伟,王丹丹,等.地下水埋深对胡杨(Populus euphratica)、柽柳(Tamarix ramosissima)气孔响应水汽压亏缺敏感度的影响[J].中国沙漠,2016,36(5):1296-1301.
[25] 陈亚宁,陈亚鹏,李卫红,等.塔里木河下游胡杨脯氨酸累积对地下水位变化的响应[J].科学通报,2003,48(9):958-961.
[26] Chen Y,Chen Y,Xu C,et al.Groundwater depth affects the daily course of gas exchange parameters of Populus euphratica in arid areas[J].Environmental Earth Sciences,2012,66:433-440.
[27] Pan Y,Chen Y,Chen Y,et al.Impact of groundwater depth on leaf hydraulic properties and drought vulnerability of Populus euphratica in the northwest of china[J].Trees,2016,30(6):2029-2039.
[28] Roussel M,Dreyer E,Montpied P,et al.The diversity of (13)C isotope discrimination in a quercusrobur full-sib family is associated with differences in intrinsic water use efficiency,transpiration efficiency,and stomatal conductance[J].Journal of Experimental Botany,2009,60:2419-2431.
[29] Brodribb T J,Holbrook N M.Stomatal closure during leaf dehydration,correlation with other leaf physiological traits[J].Plant Physiology,2003,132:2166-2173.
[30] Brodribb T J,Holbrook N M.Declining hydraulic efficiency as transpiring leaves desiccate:two types of response[J].Plant,Cell & Environment,2006,29:2205-2215.
[31] 郑国锠.生物显微技术[M].北京:人民教育出版社,1978.
[32] Scoffoni C,Sack L,Prometheus Wiki contributors.Quantifying leaf vein traits[EB/OL].(2013-08-06 UTC)[2016-09-05].http://www.publish.csiro.au/prometheuswiki/tiki-pagehistory.php?page=Quantifyingleafveintraits&preview=15.
[33] Kumar V,Kodandaramaiah J,Rajan M V.Leaf and anatomical traits in relation to physiological characteristics in mulberry (morus sp.) cultivars[J].Turkish Journal of Botany,2012,36(6):683-689.
[34] Savvides A,Fanourakis D,Van I W.Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves[J].Journal of Experimental Botany,2011,63(3):1135-1143.
[35] Sack L,Tyree M T.Leaf hydraulics and its implications in plant structure and funfunction[M]//Holbrook N M,Zwieniecki M A.Vascular Transport in Plants.Oxford:Elsevier,2005:93-114.
[36] Aasamaa K,Sōber A,Rahi M.Leaf anatomical characteristics associated with shoot hydraulic conductance,stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees[J].Functional Plant Biology,2001,28:765-774.
[37] Nardini A,Tyree M T,Salleo S.Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics[J].Plant Physiology,2001,125:1700-1709.
[38] Vogelman T C,Nishio J N,Smith W K.Leaves and light capture:light propagation and gradients of carbon fixation within leaves[J].Trends in Plant Science,1996,1:65-70.
[39] 容丽,王世杰,杜雪莲,等.喀斯特峡谷石漠化区6种常见植物叶片解剖结构与δ13C值的相关性[J].林业科学,2008,44(10):29-34.
[40] Pearce D W,Millard S,Bray D F,et al.Stomatal characteristics of riparian poplar species in a semi-arid environment[J].Tree Physiology,2006,26:211-218.
[41] Dillen S Y,Marron N,Koch B,et al.Genetic variation of stomatal traits and carbon isotope discrimination in two hybrid poplar families (Populus deltoides ‘s9-2’×P.Nigra ‘ghoy’ and P.Deltoides ‘s9-2’×P.Trichocarpa ‘v24’)[J].Annals of Botany,2008,102:399-407.
[42] Galmes J,Conesa M,Ochogavía J,et al.Physiological and morphological adaptations in relation to water use efficiency in mediterranean accessions of Solanum lycopersicum[J].Plant,Cell & Environment,2011,34:245-260.
[43] Poorter H,Niinemets V,Poorter L,et al.Causes and consequences of variation in leaf mass per area (lma):a meta-analysis[J].New Phytologist,2009,182:565-588.
[44] Galmes J,Ochogavía J,Gago J,et al.Leaf responses to drought stress in mediterranean accessions of Solanum lycopersicum:anatomical adaptations in relation to gas exchange parameters[J].Plant,Cell & Environment,2013,36:920-935.
[45] Brodribb T J,Jordan G J.Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees[J].New Phytologist,2011,192:437-448.
[46] Blonder B,Violle C,Bentley L P,et al.Venation networks and the origin of the leaf economics spectrum[J].Ecology Letters,2011,14:91-100.
[1] 徐翀, 庾强, 左小安, 张春萍, 牛得草. 氮素添加对草原不同冠层植物光合作用的影响[J]. 中国沙漠, 2019, 39(1): 135-141.
[2] 牛亚毅, 李玉强, 王旭洋, 龚相文, 杨欢. 沙地玉米水分利用效率日变化特征[J]. 中国沙漠, 2019, 39(1): 142-148.
[3] 孟阳阳, 刘冰, 刘婵. 水盐梯度下湿地柽柳(Tamarix ramosissima)光合响应特征和水分利用效率[J]. 中国沙漠, 2018, 38(3): 568-577.
[4] 周莹莹, 陈亚宁, 朱成刚, 陈亚鹏, 陈晓林. 塔里木河下游胡杨(Populus euphratica)种群结构[J]. 中国沙漠, 2018, 38(2): 315-323.
[5] 石丽丽, 蒋志荣, 方向文. 新疆沙冬青(Ammopiptanthus nanus)和蒙古沙冬青(A.monglicus)叶片解剖特征及抗旱性[J]. 中国沙漠, 2018, 38(1): 157-162.
[6] 杨晓东, 龚雪伟, 朱丽安, 吕光辉. 胡杨(Populus euphratica)水分再分配与其伴生种多样性和生态位的关系[J]. 中国沙漠, 2017, 37(5): 933-941.
[7] 种培芳, 姬江丽, 李毅, 单立山, 苏世平. 红砂(Reaumuria soongorica)对大气CO2浓度升高及降水变化的光合生理响应[J]. 中国沙漠, 2017, 37(4): 714-723.
[8] 李肖娟, 张福平, 王虎威, 雷声剑, 高张. 黑河流域植被水分利用效率时空变化特征及其与气候因子的关系[J]. 中国沙漠, 2017, 37(4): 733-741.
[9] 苏阳, 祁元, 王建华, 徐菲楠, 张金龙. 基于LiDAR数据的额济纳绿洲胡杨(Populus euphratica)河岸林植被覆盖分类与植被结构参数提取[J]. 中国沙漠, 2017, 37(4): 689-697.
[10] 朱雅娟, 赵雪彬, 刘艳书, 李蕴, 范文秀. 青海共和盆地沙柳(Salix psammophila)和乌柳(Salix cheilophila)的水分利用过程[J]. 中国沙漠, 2017, 37(2): 281-287.
[11] 赵哈林, 李瑾, 周瑞莲, 云建英, 冯静, 苏娜. 风沙流短暂吹袭对樟子松(Pinus sylvestris var. mongolica)幼苗光合蒸腾特性的影响[J]. 中国沙漠, 2017, 37(2): 254-260.
[12] 周天河, 赵成义, 吴桂林, 蒋少伟, 俞永祥, 王丹丹. 塔里木河上游胡杨(Populus euphratica、柽柳(Tamarix ramosissima)水分来源的稳定同位素示踪[J]. 中国沙漠, 2017, 37(1): 124-131.
[13] 张肖, 王旭, 焦培培, 李志军. 胡杨(Populus euphratica)种子萌发及胚生长对盐旱胁迫的响应[J]. 中国沙漠, 2016, 36(6): 1597-1605.
[14] 王日照, 陈亚鹏, 陈亚宁, 潘莹萍, 何广志. 地下水埋深对胡杨(Populus euphratica)叶片形态结构和水力导度的影响[J]. 中国沙漠, 2016, 36(5): 1302-1309.
[15] 赵洋, 赵怀勇, 张红菊, 柴强. 荒漠绿洲区间作和密植对作物产量和水分利用效率的影响[J]. 中国沙漠, 2016, 36(3): 681-687.