Please wait a minute...
img

官方微信

高级检索
中国沙漠  2017, Vol. 37 Issue (1): 124-131    DOI: 10.7522/j.issn.1000-694X.2015.00185
生物与土壤     
塔里木河上游胡杨(Populus euphratica、柽柳(Tamarix ramosissima)水分来源的稳定同位素示踪
周天河1,2, 赵成义1, 吴桂林1,2, 蒋少伟1,2, 俞永祥1,2, 王丹丹1,2
1. 中国科学院新疆生态与地理研究所 绿洲生态与荒漠环境重点实验室, 新疆 乌鲁木齐 830011;
2. 中国科学院大学, 北京 100049
Application of Stable Isotopes in Analyzing the Water Sources of Populus euphratica and Tamarix ramosissima in the Upstream of Tarim River
Zhou Tianhe1,2, Zhao Chengyi1, Wu Guilin1,2, Jiang Shaowei1,2, Yu Yongxiang1,2, Wang Dangdang1,2
1. Key Laboratory of Oasis Ecology and Desert Environment, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(2909 KB)  
摘要: 通过分析塔里木河上游胡杨(Populus euphratica)、柽柳(Tamarix ramosissima)茎干水和各潜在水源(河水、土壤水、地下水)的δD、δ18O同位素组成,应用多水源混合模型(IsoSource模型)研究了胡杨、柽柳的水分来源和对各潜在水源的利用比例。结果表明:0~100 cm土壤水受蒸发影响大,土壤水δ18O值偏大;100~300 cm土壤水和地下水δ18O值偏小且各点不存在显著差异。柽柳茎干水的δ18O值小于胡杨,且均随河岸距离增加而减小;在河岸,胡杨最多能利用14.2%的河水,柽柳对河水的利用比例最大达到35.3%,二者对浅层0~100 cm土壤水的利用比例较高;远离河岸,胡杨主要利用大于120 cm的土壤水和地下水,对地下水的利用比例40%~50%,柽柳以地下水作为其主要水源,最大利用比例达到94.5%。胡杨生长需要适宜的地下水埋深条件(350~420 cm),柽柳在浅地下水埋深和大于450 cm的深地下水埋深条件下均能良好生长,对不同水分条件的适应能力优于胡杨。
关键词: δD、δ18O稳定同位素塔里木河河岸带胡杨(Populus euphratica)、柽柳(Tamarix ramosissima水分来源    
Abstract: Based on the stable hydrogen and oxygen isotope compositions of the stem water from Populus euphratica and Tamarix ramosissima and potential water sources (river water, 0-300 cm soil water and groundwater) in the upstream of Tarim river ,The water source and contributions of potential water sources to total water uptake of Populus euphratica and Tamarix ramosissima were simulated by the IsoSource model. The results show that the shallow soil water in 0-100 cm was significantly affected by evaporation with higher δ18O value while the distance was farther from the river. The variation of the δ18O value of soil water in 100-300 cm and the groundwater were not significant, and were lower than shallow soil water. The δ18O value of stem water was lower while the distance was farther from river, and the δ18O value of stem water from Tamarix ramosissima was lower than Populus euphratica. Simulated result of mixing modal show that the potential depth of plant water uptake was deeper while the distance was farther from river. At the river bank, Populus euphratica and Tamarix ramosissima could use stream water directly, the largest utilization rate of Populus euphratica was 14.2%, the largest utilization rate of Tamarix ramosissima was 35.3% at flood plain, and the proportional contributions of shallow soil water to plant water uptake was high. Far away from the river bank, the proportional contributions of subsoil water in 0-100 cm and groundwater to water uptake was increases, the Populus euphratica mainly used the soil water under 120 cm and also the groundwater, the largest utilization rate of groundwater is 40%-50%, and the Tamarix ramosissima mainly used groundwater, and the largest utilization rate of groundwater is 94.5%. Populus euphratica survive need suitable water table (350-420 cm), Tamarix ramosissima could grow well either in shallow groundwater area or in the area water table under 450 cm. Contrasted the water sources of Populus euphratica and Tamarix ramosissima, the adaptability of Tamarix ramosissima is superior to Populus euphratica under variable water availability.
Key words: δD, δ18O stable isotopes    Tarim River    riparian zone    Populus euphratica    Tamarix ramosissima    water source
收稿日期: 2015-10-11 出版日期: 2017-01-20
:  Q948.11  
基金资助: 国家科技支撑项目(2013BAC10B01);国家自然科学基金项目(41171095);国家重点基础研究发展计划项目(2013CB429905)
通讯作者: 赵成义(E-mail:zcy@ms.xjb.ac.cn)     E-mail: zcy@ms.xjb.ac.cn
作者简介: 周天河(1988-),男,江西赣州人,硕士研究生,主要从事生态水文学研究。E-mail:tianhe00@aliyun.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周天河
赵成义
吴桂林
蒋少伟
俞永祥
王丹丹

引用本文:

周天河, 赵成义, 吴桂林, 蒋少伟, 俞永祥, 王丹丹. 塔里木河上游胡杨(Populus euphratica、柽柳(Tamarix ramosissima)水分来源的稳定同位素示踪[J]. 中国沙漠, 2017, 37(1): 124-131.

Zhou Tianhe, Zhao Chengyi, Wu Guilin, Jiang Shaowei, Yu Yongxiang, Wang Dangdang. Application of Stable Isotopes in Analyzing the Water Sources of Populus euphratica and Tamarix ramosissima in the Upstream of Tarim River. JOURNAL OF DESERT RESEARCH, 2017, 37(1): 124-131.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2015.00185        http://www.desert.ac.cn/CN/Y2017/V37/I1/124

[1] Webb R H,Leake S A.Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States[J].Journal of Hydrology,2006,320(3):302-323.
[2] Dawson T E,Ehleringer J R.Streamside trees that do not use stream water[J],Nature,1991,350(6316):335-337.
[3] Muttiah R S,White J D,Duhe J R,et al.Estimation of source water to cedar elm in a central Texas riparian ecosystem[J].Hydrological Processes,2005,19(2):475-491.
[4] Busch D E,Ingraham N L,Smith S D.Water uptake in woody riparian phreatophytes of the southwestern United States:a stable isotope study[J].Ecological Applications,1992,2(4):450-459.
[5] Justin F C,Enily P,Ian E W,et al.Water sources accessed by arid zone riparian trees in highly saline environments,Australia[J].Oecologia,2008,156(1):43-52.
[6] 赵良菊,肖洪浪,程国栋,等.黑河下游河岸林植物水分来源初步研究[J].地球学报,2008,29(6):709-718.
[7] 张付新.试论塔里木河流域植被变化与环境变迁的互动关系[J].塔里木大学学报,2009(4):55-60.
[8] 刘铭庭.新疆柽柳属植物研究及推广应用[J].中国沙漠,1996,16(4):101-102.
[9] Phillips D L,Gregg J W.Source partitioning using stable isotopes:coping with too many sources[J].Oecologia,2003,136(2):261-269.
[10] Craig H.Isotopic variations in meteoric waters[J].Science,1961,133(3465):1702-1703.
[11] Dawson T E,John S P.Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology:a stable isotope investigation[J].Oecologia,1996,107(1):13-20.
[12] 姚俊强,刘志辉,郭小云,等.呼图壁河流域水体氢氧稳定同位素特征及转化关系[J].中国沙漠,2016,36(5):1443-1450.
[13] Nie Y,Chen H,Wang K,et al.Water source utilization by woody plants growing on dolomite outcrops and nearby soils during dry seasons in karst region of Southwest China[J].Journal of Hydrology,2012,420:264-274.
[14] Overdieck D,Ziche D,Yu R D.Gas exchange of Populus euphratica leaves in a riparian zone[J].Journal of Arid Land,2013,5(4):531-541.
[15] 司建华,冯起,李建林,等.荒漠河岸林胡杨吸水根系空间分布特征[J],生态学杂志,2007,26(1):1-4.
[16] 刘树宝,陈亚宁,李卫红,等.黑河下游不同林龄胡杨水分来源的D、18O同位素示踪[J].干旱区地理,2014,37(5):988-995,
[17] 袁亚鹏,赵阳,赵传燕,等.黑河下游不同生境胡杨(Populus euphratica)叶片碳同位素组成特征[J].中国沙漠,2015,35(6):1505-1511.
[18] 陈小丽,陈亚宁,陈亚鹏.黑河下游荒漠河岸林植物水分利用关系研究[J].中国生态农业学报,2014,22(8):972-979.
[19] 尹力,赵良菊,阮云峰,等.黑河下游典型生态系统水分补给源及优势植物水分来源研究[J].冰川冻土,2012,34(6):1478-1486.
[20] 付爱红,陈亚宁,李卫红,等.新疆塔里木河下游不同地下水位的胡杨水势变化分析[J].干旱区地理,2004,27(2):207-211.
[21] 黄金廷,侯光才,尹立河,等.干旱半干旱区天然植被的地下水水文生态响应研究[J].干旱区地理,2011,34(5):787-793.
[22] 周天河,赵成义,俞永祥,等.基于稳定氢氧同位素的胡杨与柽柳幼苗水分来源研究[J].水土保持学报,2015(4):241-246.
[23] Lipp J,Trimborn P,Edwards T,et al.Climatic effects on the δ18O and δ13C of cellulose in the desert tree Tamarix jordanis[J].Geochimica et Cosmochimica Acta,1996,60(17):3305-3309.
[1] 傅思华, 胡顺军, 李浩, 王泽锋. 古尔班通古特沙漠南缘梭梭(Haloxylon ammodendron)群落优势植物水分来源[J]. 中国沙漠, 2018, 38(5): 1024-1032.
[2] 周莹莹, 陈亚宁, 朱成刚, 陈亚鹏, 陈晓林. 塔里木河下游胡杨(Populus euphratica)种群结构[J]. 中国沙漠, 2018, 38(2): 315-323.
[3] 王玉阳, 陈亚鹏, 李卫红, 王日照, 周莹莹, 张建鹏. 塔里木河下游典型荒漠河岸植物水分来源[J]. 中国沙漠, 2017, 37(6): 1150-1157.
[4] 白玉锋, 徐海量, 张沛, 张广朋, 凌红波. 塔里木河下游荒漠植物多样性、地上生物量与地下水埋深的关系[J]. 中国沙漠, 2017, 37(4): 724-732.
[5] 郭浩, 古丽·加帕尔, 包安明, 罗敏. 基于改进型垂直干旱指数的塔里木河流域绿洲与荒漠区干旱时空变化对比[J]. 中国沙漠, 2017, 37(4): 775-783.
[6] 赵少军, 魏强, 徐海量, 郭宏伟, 王希义, 赵新风. 树木年轮对塔里木河生态环境变迁的印证[J]. 中国沙漠, 2017, 37(3): 594-600.
[7] 朱雅娟, 赵雪彬, 刘艳书, 李蕴, 范文秀. 青海共和盆地沙柳(Salix psammophila)和乌柳(Salix cheilophila)的水分利用过程[J]. 中国沙漠, 2017, 37(2): 281-287.
[8] 郭辉, 黄粤, 李向义, 包安明, 宋洋, 孟凡浩. 基于多尺度遥感数据的塔里木河干流地区植被覆盖动态[J]. 中国沙漠, 2016, 36(5): 1472-1480.
[9] 李诚志, 张燕, 刘洋, 邓兴耀, 何清. 塔里木河下游居民沙漠化认知[J]. 中国沙漠, 2016, 36(5): 1271-1277.
[10] 王日照, 陈亚鹏, 陈亚宁, 潘莹萍, 何广志. 地下水埋深对胡杨(Populus euphratica)叶片形态结构和水力导度的影响[J]. 中国沙漠, 2016, 36(5): 1302-1309.
[11] 白玉锋, 陈超群, 徐海量, 杜清, 张广朋. 基于易测因子的塔里木河下游柽柳(Tamarix chinensis)灌丛地上生物量模型[J]. 中国沙漠, 2016, 36(4): 1014-1020.
[12] 王希义, 徐海量, 潘存德, 凌红波, 张沛. 塔里木河下游优势草本植物与地下水埋深的关系[J]. 中国沙漠, 2016, 36(1): 216-224.
[13] 田童, 刘新平, 赵俊, 刘雨萌. 塔里木河流域农牧资源与农牧经济耦合关系[J]. 中国沙漠, 2015, 35(5): 1382-1387.
[14] 苏里坦, 李玉生, 艾尔肯·艾比布拉, 赵天宇. 塔里木河下游河岸胡杨(Populus euphratica)林耗水过程模拟[J]. 中国沙漠, 2015, 35(2): 380-384.
[15] 施枫芝, 赵成义, 叶柏松, 杨与广. 基于PTFs的干旱地区土壤饱和导水率的尺度扩展[J]. 中国沙漠, 2014, 34(6): 1584-1589.