Please wait a minute...
img

官方微信

高级检索
中国沙漠  2016, Vol. 36 Issue (5): 1302-1309    DOI: 10.7522/j.issn.1000-694X.2015.00123
生物与土壤     
地下水埋深对胡杨(Populus euphratica)叶片形态结构和水力导度的影响
王日照1,2, 陈亚鹏1, 陈亚宁1, 潘莹萍1,2, 何广志3
1. 中国科学院新疆生态与地理研究所 荒漠与绿洲生态国家重点实验室, 新疆 乌鲁木齐 830011;
2. 中国科学院大学, 北京 100049;
3. 新疆农业大学 草业与环境科学学院, 新疆 乌鲁木齐 830052
Effects of Groundwater Level on Morphological, Anatomical Structure and Leaf Hydraulic Conductance of Populus euphratica
Wang Rizhao1,2, Chen Yapeng1, Chen Yaning1, Pan Yingping1,2, He Guangzhi3
1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. College of Pratacultural and Environmental Science, Xinjiang Agricultural University, Urumqi 830052, China
 全文: PDF(3003 KB)  
摘要: 植物光合器官形态解剖结构对叶片水力导度(Kleaf)有一定指示作用。对塔里木河下游4个地下水埋深下胡杨(Populus euphratica)叶片形态解剖结构和叶片最大水力导度(Kleaf-max)分析结果显示:(1)胡杨叶片具有明显的旱生结构特点。叶片较厚,等叶面,复表皮,栅栏组织发达,排列紧密,叶肉细胞中含有两种结晶体——棱晶和簇晶,叶脉密集,气孔下陷。(2)随着地下水埋深的增大,胡杨叶片厚度(LT)、表层厚度(ET)、栅栏组织厚度(PT)、栅海比(栅栏组织厚度/海绵组织厚度,PT/ST)、叶脉密度(LVD)、主脉导管直径(MVD)、气孔密度(SD)、Kleaf-max都出现显著增加趋势,气孔面积(SA)则呈显著减小趋势,表明胡杨叶片在受到水分胁迫下通过改变形态解剖结构和水分传输效率来适应干旱。(3)胡杨叶片Kleaf-max值与LT、ET、PT、PT/ST、LVD、MVD、SD有着极显著的正相关关系(P<0.01),与SA存在极显著的负相关关系(P<0.01),这表明胡杨叶片具有的形态解剖结构特征,是其叶片水力传导能力变化的基础。
关键词: 胡杨(Populus euphratica)形态解剖结构叶片水力导度塔里木河    
Abstract: Structure is the basis of function, morphological and anatomical structure of photosynthetic organ can indicate their leaf hydraulic conductance (Kleaf). In this paper, the relationships between morphological, anatomical structure parameters and leaf maximum hydraulic conductance (Kleaf-max) were analyzed at different groundwater depths in the lower reaches of Tarim River. The results showed that:(1) Populus euphratica leaf exhibited obvious xeric structure:leaf was thick and isobilateral, and the upper and lower epidermis were made up of two-storey cell. There were highly developed palisade tissue, highly developed leaf vein, sunken stomata and two types of crystals:prismatic crystal and clustered crystal in the mesophyll cells. (2) The study showed that leaf thickness (LT), epidermal thickness (ET), palisade tissue thickness (PT), the ratio of palisade tissue thickness to spongy tissue thickness (PT/ST), leaf vein density (LVD), major vein vessel diameter (MVD), stomatal density (SD) increased, stomatal area (SA) decreased as the groundwater depth increased. So we concluded that Populus euphratica changed the morphological and anatomical structure and leaf hydraulic conductance to adapt drought. (3) Kleaf-max showed significant positive correlations with LT, ET, PT, PT/ST, LVD, MVD, SD(P<0.01), while showing significantly negative correlation with SA (P<0.01). These indicted that the character of morphological and anatomical structure was the basis of P.euphratica leaf hydraulics.
Key words: Populus euphratica    morphological and anatomical structure    leaf hydraulic conductance    Tarim River
收稿日期: 2015-05-28 出版日期: 2016-09-20
:  Q948.11  
基金资助: 国家自然科学基金项目(41371515);国家支撑计划课题(2014BAC15B02)
通讯作者: 陈亚鹏(E-mail:chenyp@ms.xjb.ac.cn)     E-mail: chenyp@ms.xjb.ac.cn
作者简介: 王日照(1988-),男,山东潍坊人,硕士研究生,主要从事植物生理生态研究。E-mail:wangrizhao2012@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王日照
陈亚鹏
陈亚宁
潘莹萍
何广志

引用本文:

王日照, 陈亚鹏, 陈亚宁, 潘莹萍, 何广志. 地下水埋深对胡杨(Populus euphratica)叶片形态结构和水力导度的影响[J]. 中国沙漠, 2016, 36(5): 1302-1309.

Wang Rizhao, Chen Yapeng, Chen Yaning, Pan Yingping, He Guangzhi. Effects of Groundwater Level on Morphological, Anatomical Structure and Leaf Hydraulic Conductance of Populus euphratica. JOURNAL OF DESERT RESEARCH, 2016, 36(5): 1302-1309.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2015.00123        http://www.desert.ac.cn/CN/Y2016/V36/I5/1302

[1] 陈亚宁,张小雷,祝向民,等.新疆塔里木河下游断流河道输水的生态效应分析[J].中国科学:D辑,2004,34(5):475-482.
[2] Klich M G.Leaf variations in Elaeagnus angustifolia related to heterogeneity[J].Environmental and Experimental Botany,2000,44(3):171-183.
[3] 周智彬,李培军.我国旱生植物的形态解剖学研究[J].干旱区研究,2002,19(2):35-40.
[4] He C X,Li J Y,Zhou P,et al.Changes of leaf morphological,anatomical structure and carbon isotope ratio with the height of the Wangtian tree (Parashorea chinensis) in Xishuangbanna,China[J].Journal of Integrative Plant Biology,2008,50(2):168-173.
[5] Galmes J,Ochogav A J,Gago J,et al.Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum:anatomical adaptations in relation to gas exchange parameters[J].Plant,Cell & Environment,2013,36(5):920-935.
[6] 李鸿雁,李志勇,师文贵,等.内蒙古扁蓿豆叶片解剖性状与抗旱性的研究[J].草业学报,2012,21(3):138-146.
[7] 邱权,潘昕,李吉跃,等.青藏高原20种灌木抗旱形态和生理特征[J].植物生态学报,2014,38(6):562-575.
[8] 李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报,2006,22:118-127.
[9] Sack L,Cowan P D,Jaikumar N,et al.The ‘hydrology’ of leaves:coordination of structure and function in temperate woody species[J].Plant,Cell & Environment,2003,26(8):1343-1356.
[10] Scoffoni C,Rawls M,McKown A,et al.Decline of leaf hydraulic conductance with dehydration:relationship to leaf size and venation architecture[J].Plant Physiology,2011,156(2):832-843.
[11] Aasamaa K,Niinemets V,S ber A.Leaf hydraulic conductance in relation to anatomical and functional traits during Populus tremula leaf ontogeny[J].Tree Physiology,2005,25(11):1409-1418.
[12] Brodribb T J,Feild T S,Sack L.Viewing leaf structure and evolution from a hydraulic perspective[J].Functional Plant Biology,2010,37(6):488-498.
[13] 张志亮,刘国东,张富仓,等.植物叶片导水率的研究进展[J].生态学杂志,2014,33(6):1663-1670.
[14] Brodribb T J,Holbrook N M.Diurnal depression of leaf hydraulic conductance in a tropical tree species[J].Plant,Cell & Environment,2004,27(7):820-827.
[15] Aasamaa K,S ber A,Rahi M.Leaf anatomical characteristics associated with shoot hydraulic conductance,stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees[J].Functional Plant Biology,2001,28(8):765-774.
[16] 王海珍,陈加利,韩路,等.地下水位对胡杨(Populus euphratica)和灰胡杨(Populus pruinosa)叶绿素荧光光响应与光合色素含量的影响[J].中国沙漠,2013,33(4):1054-1063.
[17] 周洪华,陈亚宁,李卫红,等.塔里木河下游胡杨气体交换特性及其环境解释[J].中国沙漠,2008,28(4):665-672.
[18] 司建华,常宗强,苏永红,等.胡杨叶片气孔导度特征及其对环境因子的响应[J].西北植物学报,2008,28(1):125-130.
[19] 付爱红,李卫红,陈亚宁,等.极端干旱区胡杨宽卵形叶水分变化影响因子分析[J].中国沙漠,2012,32(1):65-72.
[20] 司建华,冯起,张小由.极端干旱区胡杨水势及影响因子研究[J].中国沙漠,2005,25(4):505-510.
[21] 陈亚鹏,陈亚宁,李卫红,等.干早环境下高温对胡杨光合作用的影响[J].中国沙漠,2009,29(3):474-479.
[22] 周洪华,陈亚宁,李卫红,等.干旱区胡杨光合作用对高温和CO2浓度的响应[J].生态学报,2009,29(6):2797-2810.
[23] 曹生奎,冯起,司建华,等.极端干旱区胡杨生长季水分利用效率变化特征研究[J].中国沙漠,2012,32(3):724-729.
[24] 谭永芹,柏新富,朱建军,等.干旱区五种木本植物枝叶水分状况与其抗旱性能[J].生态学报,2011,31(22):6815-6823.
[25] 张玲,焦培培,李志军.中国新疆灰叶胡杨群体遗传多样性的SSR分析[J].生态学杂志,2012,31(11):2755-2761.
[26] Eusemann P,Fehrenz S,Schnittler M.Development of two microsatellite multiplex PCR systems for high throughput genotyping in Populus euphratica[J].Journal of Forestry Research,2009,20(3):195-198.
[27] 杨树德,郑文菊,陈国仓,等.胡杨披针形叶与宽卵形叶的超微结构与光合特性的差异[J].西北植物学报,2005,25(1):14-21.
[28] 杨赵平,刘琴,李志军.胡杨雌雄株叶片的比较解剖学研究[J].西北植物学报,2011,31(1):79-83.
[29] 李卫红,庄丽,公维昌,等.塔里木河下游胡杨叶片变化与环境异质性[J].中国沙漠,2009,29(4):680-687.
[30] 陈亚宁,李卫红,徐海量,等.塔里木河下游地下水位对植被的影响[J].地理学报,2003,58(4):542-549.
[31] 李正理,张新英.植物解剖学[M].北京:高等教育出版社,1984.
[32] Brodribb T J,Holbrook N M.Stomatal closure during leaf dehydration,correlation with other leaf physiological traits[J].Plant Physiology,2003,132(4):2166-2173.
[33] 王万里.压力室(PRESSURE CHAMBER)在植物水分状况研究中的应用[J].植物生理学通讯,1984,3:52-57.
[34] 陈豫梅,陈厚彬.香蕉叶片形态结构与抗旱性关系的研究[J].热带农业科学,2001(4):14-16.
[35] 郭改改,封斌,麻保林,等.不同区域长柄扁桃叶片解剖结构及其抗旱性分析[J].西北植物学报,2013,33(4):720-728.
[36] Sack L,Holbrook N M.Leaf hydraulics[J].Annual Review fo Plant Biology,2006,57:361-381.
[37] Sinclair T R,Zwieniecki M A,Holbrook N M.Low leaf hydraulic conductance associated with drought tolerance in soybean[J].Physiologia Plantarum,2008,132(4):446-451.
[38] 张海娜,苏培玺,李善家,等.荒漠区植物光合器官解剖结构对水分利用效率的指示作用[J].生态学报,2013,33(16):4909-4918.
[39] 潘莹萍,陈亚鹏.叶片水力性状研究进展[J].生态学杂志,2014,33(10):2834-2841.
[40] Sack L,Frole K.Leaf structural diversity is related to hydraulic capacity in?tropical rain forest trees[J].Ecology,2006,87(2):483-491.
[41] 董建芳,李春红,刘果厚,等.内蒙古6种沙生柳树叶片解剖结构的抗旱性分析[J].中国沙漠,2009,29(3):480-484.
[42] Pearce D W,Millard S,Bray D F,et al.Stomatal characteristics of riparian poplar species in a semi-arid environment[J].Tree Physiology,2006,26(2):211-218.
[43] Sack L,Scoffoni C.Leaf venation:structure,function,development,evolution,ecology and applications in the past,present and future[J].New Phytologist,2013,198(4):983-1000.
[44] Sack L,Scoffoni C,John G P,et al.How do leaf veins influence the worldwide leaf economic spectrum?Review and synthesis[J].Journal of Experimental Botany,2013,64(13):4053-4080.
[45] Pockman W T,Sperry J S.Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation[J].American Journal of Botany,2000,87(9):1287-1299.
[46] 陈亚鹏,陈亚宁,徐长春,等.塔里木河下游地下水埋深对胡杨气体交换和叶绿素荧光的影响[J].生态学报,2011,31(2):344-353.
[1] 李端, 司建华, 张小由, 高雅玉, 罗欢, 秦洁, 任立新. 胡杨(Populus euphratica)对干旱胁迫的生态适应[J]. 中国沙漠, 2020, 40(2): 17-23.
[2] 潘莹萍, 陈亚鹏, 王怀军, 任志国. 胡杨(Populus euphratica)叶片结构与功能关系[J]. 中国沙漠, 2018, 38(4): 765-771.
[3] 周莹莹, 陈亚宁, 朱成刚, 陈亚鹏, 陈晓林. 塔里木河下游胡杨(Populus euphratica)种群结构[J]. 中国沙漠, 2018, 38(2): 315-323.
[4] 王玉阳, 陈亚鹏, 李卫红, 王日照, 周莹莹, 张建鹏. 塔里木河下游典型荒漠河岸植物水分来源[J]. 中国沙漠, 2017, 37(6): 1150-1157.
[5] 杨晓东, 龚雪伟, 朱丽安, 吕光辉. 胡杨(Populus euphratica)水分再分配与其伴生种多样性和生态位的关系[J]. 中国沙漠, 2017, 37(5): 933-941.
[6] 苏阳, 祁元, 王建华, 徐菲楠, 张金龙. 基于LiDAR数据的额济纳绿洲胡杨(Populus euphratica)河岸林植被覆盖分类与植被结构参数提取[J]. 中国沙漠, 2017, 37(4): 689-697.
[7] 白玉锋, 徐海量, 张沛, 张广朋, 凌红波. 塔里木河下游荒漠植物多样性、地上生物量与地下水埋深的关系[J]. 中国沙漠, 2017, 37(4): 724-732.
[8] 郭浩, 古丽·加帕尔, 包安明, 罗敏. 基于改进型垂直干旱指数的塔里木河流域绿洲与荒漠区干旱时空变化对比[J]. 中国沙漠, 2017, 37(4): 775-783.
[9] 赵少军, 魏强, 徐海量, 郭宏伟, 王希义, 赵新风. 树木年轮对塔里木河生态环境变迁的印证[J]. 中国沙漠, 2017, 37(3): 594-600.
[10] 周天河, 赵成义, 吴桂林, 蒋少伟, 俞永祥, 王丹丹. 塔里木河上游胡杨(Populus euphratica、柽柳(Tamarix ramosissima)水分来源的稳定同位素示踪[J]. 中国沙漠, 2017, 37(1): 124-131.
[11] 张肖, 王旭, 焦培培, 李志军. 胡杨(Populus euphratica)种子萌发及胚生长对盐旱胁迫的响应[J]. 中国沙漠, 2016, 36(6): 1597-1605.
[12] 郭辉, 黄粤, 李向义, 包安明, 宋洋, 孟凡浩. 基于多尺度遥感数据的塔里木河干流地区植被覆盖动态[J]. 中国沙漠, 2016, 36(5): 1472-1480.
[13] 李诚志, 张燕, 刘洋, 邓兴耀, 何清. 塔里木河下游居民沙漠化认知[J]. 中国沙漠, 2016, 36(5): 1271-1277.
[14] 白玉锋, 陈超群, 徐海量, 杜清, 张广朋. 基于易测因子的塔里木河下游柽柳(Tamarix chinensis)灌丛地上生物量模型[J]. 中国沙漠, 2016, 36(4): 1014-1020.
[15] 王希义, 徐海量, 潘存德, 凌红波, 张沛. 塔里木河下游优势草本植物与地下水埋深的关系[J]. 中国沙漠, 2016, 36(1): 216-224.