Aboveground litter biomass is an important component of the nutrient and carbon cycling in artificial forests. Litters are produced by the plants and return to the soil eventually, provide matter and energy sources for the decomposition. In order to quantify annual litterfall biomass of the extreme arid Taklimakan Desert Highway shelter forests, the litter biomass, composition and dynamics were investigated throughout one year in 2014. The artificial shelterbelt included three species of plants, Calligonum arborescens, Haloxylon ammodendron, and Tamarix ramosissima. The results showed that the annual litterfall biomass was up to 8 301.96, 9 089.71, 10 540.64, 6 184.70, 7 929.95 kg·hm-2 at the stand ages of 8, 10, 13, 16, and 19 years. With assimilative branches of C. arborescens and H. ammodendron, and branches of T. ramosissima being dominant components of litterfall during the entire year in different age's shelterbelt, which contributed to 89.05%, 79.16%, 75.28%, 78.75%, 81.14% in the total litterfall biomass at the stand ages of 8, 10, 13, 16, and 19 years, respectively. The analysis of variance showed that there was a significant difference in the amounts of the assimilative branches, branches, leaves, seeds, flowers and others among different shelterbelt ages (P<0.05) .There was similar seasonal dynamic in different ages, the higher litterfall biomass in spring and autumn, and the lower litterfall biomass in summer and winter. Monthly changes in litterfall pattern showed three peaks in the total biomass and biomass for the assimilative branches of C. arborescens and H. ammodendron, and the branches of T. ramosissima, reaching the peaks in March to May, July, and September to November. While no obvious litterfall pattern was found for leaves, seeds and others, and flowers only present from April to August.
[1] Maguire D A.Branch mortality and potential litter fall from Douglas-fir trees in stands of varying density[J].Forest Ecology and Management,1994,70(1):41-53.
[2] 林波,刘庆,吴彦,等.森林凋落物研究进展[J].生态学杂志,2004,23(1):60-64.
[3] Zhou G Y,Guan L L,Wei X H,et al.Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong,China[J].Plant Ecology,2007,188(1):77-89.
[4] 郭伟,张健,黄玉梅,等.森林凋落物生态功能研究进展[J].安徽农业科学,2009,37(5):1984-1985,1987.
[5] 范春楠,郭忠玲,郑金萍,等.磨盘山天然次生林凋落物数量及动态[J].生态学报,2014,34(3):633-641.
[6] Cotrufo M F,Inescon P.Elevated CO2 reduces field decomposition rates of Betula pendula (Roth.) Leaf litter[J].Oecology,1996,106(4):525-530.
[7] 毕京东,李玉霖,宁志英,等.科尔沁沙地优势植物叶凋落物分解及碳矿化-凋落物质量的影响[J].中国沙漠,2016,36(1):85-92.
[8] Janzen H H.Carbon cycling in earth systems:A soil science perspective[J].Agriculture,Ecosystems and Environment,2004,104(3):399-417.
[9] Liski J,Nissinen A,Erhard M,et al.Climate effects on litter decomposition from arctic tundra to tropical rainforest[J].Global Change Biology,2003,9(4):575-584.
[10] 邓琦,刘世忠,刘菊秀,等.南亚热带森林凋落物对土壤呼吸的贡献及其影响因素[J].地球科学进展,2007,22(9):976-986.
[11] 吴雅琼,刘国华,傅伯杰,等.中国森林生态系统土壤CO2释放分布规律及其影响因子[J].生态学报,2007,27(5):2126-2135.
[12] 郭婧,喻林华,方晰,等.中亚热带4种森林凋落物量、组成、动态及其周转期[J].生态学报,2015,35(14):1-14.
[13] 曲浩,赵学勇,赵哈林,等.陆地生态系统凋落物分解研究进展[J].草业科学,2010,27(8):44-51.
[14] 李江风.塔里木沙漠和周边山区天气气候[M].北京:科学出版社,2003.
[15] 丁新原,周智彬,徐新文,等.咸水滴灌下塔克拉玛干沙漠腹地人工绿地土壤水分三维时空动态[J].应用生态学报,2015,26(9):2600-2608.
[16] 官丽莉,周国逸,张德强,等.鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究[J].植物生态学报,2004,28(4):449-456.
[17] 宁晓波,项文化,王光军,等.湖南会同连作杉木林凋落物量20年动态特征[J].生态学报,2009,29(9):5122-5129.
[18] Ma X Q,Liu C J,Ilvesniemi Hannu,et al.Biomass,litterfall and the nutrient fluxes in Chinese fir stands of different age in subtropical China[J].Journal of Forestry Research,2002,13(3):165-170.
[19] 马祥庆,刘爱琴,何智英,等.杉木幼林生态系统凋落物及其分解作用研究[J].植物生态学报,1997,21(6):564-570.
[20] 徐国良,黄忠良,欧阳学军,等.鼎湖山地表无脊椎动物多样性及其与凋落物的关系[J].动物学研究,2002,23(6):477-482.
[21] 罗永清,赵学勇,丁杰萍,等.科尔沁沙地不同类型沙地植被恢复过程中地上生物量与凋落物量变化[J].中国沙漠,2016,36(2):78-84.
[22] 彭少麟,刘强.森林凋落物动态及其对全球变暖的响应[J].生态学报,2002,22(9):1534-1544.
[23] 杨智杰,陈光水,谢锦升,等.杉木、木荷纯林及其混交林凋落物量和碳归还量[J].应用生态学报,2010,21(9):2235-2240.
[24] Chave J,Navarrete D,Almeida S,et al.Regional and seasonal patterns of litterfall in tropical South America[J].Biogeosciences,2010,7(1):43-55.
[25] 刘颖,韩士杰,林鹿.长白山四种森林类型凋落物动态特征[J].生态学杂志,2009,28(1):7-11.
[26] 郜士垒,何宗明,黄志群,等.不同年龄序列杉木人工林凋落物数量、组成及动态变化[J].江西农业大学学报,2015,37(4):638-644.
[27] 王新源,赵学勇,李玉霖,等.科尔沁沙地沙丘生境单元凋落物运移特征[J].中国沙漠,2016,36(2):167-173.
[28] 侯庸,王伯荪,张宏达,等.黑石顶自然保护区南亚热带常绿阔叶林的凋落物[J].生态科学,1998,17(2):14-18.
[29] Lawrence D.Regional-scale variation in litter production and seasonality in tropical dry forests of southern Mexico[J].Biotropica,2005,37:561-570.
[30] Scherer-Lorenzen M,Bonilla J L,Potvin C.Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment[J].Oikos,2007,116:2108-2124.
[31] 凌华,陈光水,陈志勤.中国森林凋落量的影响因素[J].亚热带资源与环境学报,2009,4(4):66-71.
[32] 温远光,韦炳二,黎洁娟.亚热带森林凋落物产量及动态的研究[J].林业科学,1989,25(6):542-548.