img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
沙漠与沙漠化

库布齐沙漠110 MW光伏基地次生风沙危害的动力学机制

  • 韩致文 ,
  • 郭彩贇 ,
  • 李爱敏 ,
  • 钟帅
展开
  • 1. 中国科学院西北生态环境资源研究院 沙漠与沙漠化重点实验室, 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049;
    3. 菏泽学院 城市建设学院, 山东 菏泽 274015
郭彩贇(1990-),女,甘肃肃南人,硕士研究生,从事风沙地貌与沙漠化防治研究。E-mail:guocaiyun@lzb.ac.cn

收稿日期: 2016-09-23

  修回日期: 2016-10-16

  网络出版日期: 2018-03-20

基金资助

国家科技支撑计划项目(2015BAC06B01-01);国家自然科学基金项目(41371025)

Dynamic Mechanism Research on the Secondary Blown Sand Disaster in the 110 MW Photovoltaic Arrays of the Hobq Desert

  • Han Zhiwen ,
  • Guo Caiyun ,
  • Li Aimin ,
  • Zhong Shuai
Expand
  • 1. Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Urban Construction College, Heze University, Heze 274015, Shandong, China

Received date: 2016-09-23

  Revised date: 2016-10-16

  Online published: 2018-03-20

摘要

为了解释光伏设施干扰下沙质地表侵蚀堆积的动力机制,在库布齐沙漠110 MW光伏电站选取2个断面,利用MetOne 014A/024A型自动风速仪,同步观测了光伏板前后不同位置20、50、100、200 cm高度的1 min平均风速,分析了光伏板干扰下流场格局变异及其与地表蚀积态势的关系。结果表明:(1)光伏设施强烈干扰流场格局,产生流场分异区:板下集流加速区、板前板后遇阻减速区、板面抬升区和板间恢复区,但光伏基地上风向边缘区域与腹地的流场分布格局存在显著差异;(2)空间流场特征区发育程度所指示的动力分布与地面侵蚀堆积态势基本对应;(3)植被可有效增大地面粗糙度,降低0~50 cm近地表过境风速,减缓地表蚀积过程的发生与加剧;(4)光伏板下的集流加速和板前板后的反向涡旋,是塑造地表风蚀沟(坑)及积沙带发育的主要动力。

本文引用格式

韩致文 , 郭彩贇 , 李爱敏 , 钟帅 . 库布齐沙漠110 MW光伏基地次生风沙危害的动力学机制[J]. 中国沙漠, 2018 , 38(2) : 225 -232 . DOI: 10.7522/j.issn.1000-694X.2016.00142

Abstract

In order to explain the dynamic mechanism of sand erosion and accumulation of sandy surface under the interference of photovoltaic facilities, two cross sections were set in the 110 MW photovoltaic Plant located in the Hopq Desert. MetOne 014A/024A 8 channel anemometer (with CR200X data collection instrument) were used, and the average wind speed of four heights (20 cm, 50 cm, 100 cm, 200 cm) around the photovoltaic panel were observed simultaneously. The variations of wind velocity around the photovoltaic panel were analysed. Results showed that:(1) The photovoltaic facilities resulted in the variations of flow field on both sides of the photovoltaic panels and generated four secondary flow field zones, namely, the conflux accelerating speed-up zone under the panels, the resistance decelerating zone in front and back of the panels, the uplift zone above the panels and the recovery area between the plates; Moreover, there were significant differences in the flow field pattern between the upwind edge region and the area within the photovoltaic plants. (2) The dynamical distribution indicated by develop degree of the flow field pattern was identical with the surface erosion and accumulation situation basically. (3)Vegetation can increase the surface roughness effectively, and reduce the transit speed below 50 cm near surface, and prevent the occurrence and aggravation of the sand erosion. (4) The conflux accelerating zone under the panels and the reverse vortex around the panels were the main dynamic mechanisms of shaping wind erosion ditches (PITS) and sand accumulation belts, respectively.

参考文献

[1] 宋家欢,王涛,薛娴,等.降尘对中国北方主要城市光伏电站发电量的影响[J].中国沙漠,2016,36(4):933-942.
[2] 范修其,郑春明.重点工程建设水土流失防护初探[J].浙江水利科技,2001,21(4):16-17.
[3] 武俊瑛,高永.浑善达克沙地公路机械沙障防风固沙效益分析[J].干旱区资源与环境,2010,24(12):161-166.
[4] 胡春元,杨茂,杨存良,等.库布齐沙漠穿沙公路沙害综合防治技术[J].干旱区资源与环境,2002,16(3):71-77.
[5] 丁向南,王锡来.人工聚沙堤防治铁路沙害的初期试验研究[J].中国沙漠,1990,10(1):13-21.
[6] 程建军,蒋富强,杨印海,等.戈壁铁路沿线风沙灾害特征与挡风沙措施及功效研究[J].中国铁道科学,2010,31(5):15-20.
[7] 康鹏,张益田,崔军立.沙尘对变电站安全运行影响分析及应对措施[J].青海电力,2011,30(S1):60-63.
[8] Garg H P.Effect of dirt on transparent covers in flat-plate solar energy collectors[J].Solar Energy,1974,15(4):299-302.
[9] Al-Jamal K,Quinn M,Jarrar D,et al.Dust effect on infrared sky radiation in Kuwait[J].Solar & Wind Technology,1984,1(2):109-114.
[10] El-Nashar A M.Effect of dust deposition on the performance of a solar desalination plant operating in an arid desert area[J].Solar Energy,2003,75(75):421-431.
[11] El-Shobokshy M S,Hussein F M.Effect of dust with different physical properties on the performance of photovoltaic cells[J].Solar Energy,1993,51(6):505-511.
[12] Gaier James R,Perez-Davis M E.Effect of particle size of Martian dust on the degradation of photovoltaic cell performance[R].1991.
[13] Ghazi S,Sayigh A,Ip K.Dust effect on flat surfaces-a review paper[J].Renewable & Sustainable Energy Reviews,2014,33(2):742-751.
[14] Hegazy A A.Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors[J].Renewable Energy,2001,22(4):525-540.
[15] Tagawa A K K,Qinglin P.Effect of sand erosion of glass surface on performances of photovoltaic module[J].Proceedings of the 2012 Mechanical Engineering Conference on Sustainable Research and Innovation,2012,4(3):75-77.
[16] Mejia F,Kleissl J,Bosch J L.The Effect of Dust on Solar Photovoltaic Systems[J].Energy Procedia,2014,49(1):2370-2376.
[17] Qasem H,Betts T R,M llejans H,et al.Dust Induced Shading on Photovoltaic Modules[J].Progress in Photovoltaics Research & Applications,2014,22(2):218-226.
[18] 鲍官军,张林威,蔡世波,等.光伏面板积灰及除尘清洁技术研究综述[J].机电工程,2013,30(8):909-913.
[19] Katzan C M,Stidham C R.Lunar Dust Interactions with Photovoltaic Arrays[R].1991:1548-1553.
[20] Thongsawaeng C,Audomvongseree K.Determination of the optimal battery capacity of a grid-connected photovoltaic system with power and frequency fluctuations consideration[R].2013:1-6.
[21] 杨金焕.固定式光伏方阵最佳倾角的分析[J].太阳能学报,1992,13(1):86-92.
[22] 晁勤,戴训江.太阳能光伏模块电气特性的数学建模与仿真[J].半导体光电,2009,30(1):47-50,126.
[23] 肖建华,姚正毅,孙家欢.并网太阳能光伏电站选址研究述评[J].中国沙漠,2011,31(6):1598-1605.
[24] 袁方,张振师,卜崇峰,等.毛乌素沙地光伏电站项目区风速流场及风蚀防治措施[J].中国沙漠,2016,36(2):287-294.
[25] 包小庆,陈渠昌.库布齐沙漠侵蚀状况及治理构想[J].水土保持研究,1998,5(3):26-50.
[26] Jackson P S,Hunt J C R.Turbulent wind flow over a low hill[J].Quarterly Journal of the Royal Meteorological Society,1975,101:929-955.
[27] 陶彬彬,刘丹,管超,等.库布齐沙漠南缘抛物线形沙丘表面风沙流结构变异[J].地理科学进展,2016,35(1):98-107.
[28] 哈斯,董光荣.腾格里沙漠东南缘沙丘表面气流与坡面形态的关系[J].中国沙漠,1999,19(1):1-5.
文章导航

/