img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索

气候变化下的孑遗植物裸果木(Gymnocarpos przewalskii)适宜生境分布

  • 赵泽斌 ,
  • 赵泽芳 ,
  • 卫海燕 ,
  • 郭彦龙 ,
  • 栾文飞
展开
  • 1. 北京师范大学 中药资源保护与利用北京市重点实验室/地理科学学部, 北京 100875;
    2. 陕西师范大学 地理科学与旅游学院, 陕西 西安 710119;
    3. 中国科学院青藏高原研究所, 北京 100085;
    4. 中国科学院西北生态环境资源研究院, 甘肃 兰州 730000
赵泽芳(1992-),女,陕西商洛人,博士研究生,主要从事地图学与生态建模研究。E-mail:zzfnn@mail.bnu.edu.cn

收稿日期: 2019-06-11

  修回日期: 2019-08-01

  网络出版日期: 2020-04-26

基金资助

中国博士后科学基金项目(2019M650857)

Impact of climate change on the suitable habitatdistribution of Gymnocarpos przewalskii, a relict plant

  • Zhao Zebin ,
  • Zhao Zefang ,
  • Wei Haiyan ,
  • Guo Yanlong ,
  • Luan Wenfei
Expand
  • 1. Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization/Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China;
    2. School of Geography and Tourism, Shaanxi Normal University, Xian 710119, China;
    3. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China;
    4. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Received date: 2019-06-11

  Revised date: 2019-08-01

  Online published: 2020-04-26

摘要

裸果木(Gymnocarpos przewalskii)为濒危孑遗植物,对荒漠生态系统具有重要意义。以生态位理论为基础,利用BIOMOD2建模平台中的5个模型算法(MaxEnt、RF、GBM、GAM、CTA)结合3大类19个环境气候因子数据构建组合物种分布模型模拟该物种在基准气候条件下的分布,并进一步预测在不同气候变化情景下分布范围的变化,进而为该物种原生产地保护及人工种植提供依据。结果表明:(1)Bio3(等温性)、Bio11(最冷季平均温度)、Bio12(年降水量)、Bio19(最冷季降水量)、slope(坡度)、T_caso4(表土硫酸钙含量)、T_gravel(表土砾石含量)、Tusda(表层土壤USDA分类)为影响该物种适宜生境分布的主要环境因子;(2)基准气候条件下,中国西北地区裸果木适宜生境面积约为0.59×106 km2,主要分布于河西走廊及其周边区域,在塔里木盆地边缘也有较为集中的适宜生境分布。(3)在气候变暖的情景下该物种适宜生境面积略有增加,且不同气候变化情景差异较小,适宜生境整体北移。

本文引用格式

赵泽斌 , 赵泽芳 , 卫海燕 , 郭彦龙 , 栾文飞 . 气候变化下的孑遗植物裸果木(Gymnocarpos przewalskii)适宜生境分布[J]. 中国沙漠, 2020 , 40(2) : 125 -133 . DOI: 10.7522/j.issn.1000-694X.2019.00075

Abstract

Gymnocarpos przewalskii is an endangered relict plant, which plays an important role in maintaining and improving the fragile desert ecological environment. Based on niche theory, combined with 19 environmental and climate variables belong to 3 categories we developed a comprehensive habitat suitability model by integrating 5 model algorithms to a unified modeling process to assess the distribution of suitable G. przewalskii habitats across China in the 2000s and the 2070s under RCP 6.0, RCP 4.5 and RCP 2.6 climate change emission scenarios, which will provide theoretical and technical support for the introduction and domestication for G. przewalskii. Our results show that Bio3 (Isothermality), Bio11 (Mean temperature of coldest quarter), Bio12 (Annual precipitation), Bio19 (Precipitation of coldest quarter), Slope, T_caso4 (Topsoil gypsum), T_gravel (Topsoil gravel content), Tusda (Topsoil USDA Texture Classification) were dominant environmental variables for the suitable habitat distribution of this species. Under the basic climatic conditions, the suitable habitats for G. przewalskii in China were approximately 0.59×106 km2, which mainly distributes in the Hexi Corridor and its surrounding areas, and the margin of the Tarim Basin. Under the climate warming scenario, the suitable habitat area will increased slightly, and the difference between various climate change scenarios was small, with the suitable habitat will shift northward.

参考文献

[1] 曾永年,冯兆东.沙质荒漠化遥感监测与环境影响研究进展[J].山地学报,2005,24(2):218-227.
[2] Sanders-Demott R,Smith N G,Templer P H,et al.Towards an integrated understanding of terrestrial ecosystem feedbacks to climate change[J].New Phytologist,2016,209(4):1363.
[3] Ksiksi T S,Elkeblawy A A.Floral diversity in desert ecosystems:comparing field sampling to image analyses in assessing species cover[J].BMC Ecology,2013,13(1):1-6.
[4] 孙岩,何明珠,王立.降水控制对荒漠植物群落物种多样性和生物量的影响[J].生态学报,2018,38(7):2425-2433.
[5] Ma Q,Wang J,Li X,et al.Long-term changes of Tamarix-vegetation in the oasis-desert ecotone and its driving factors:implication for dryland management[J].Environmental Earth Sciences,2009,59(4):765-774.
[6] Ma S M,Zhang M L,Sanderson S C.Phylogeography of the rare Gymnocarpos przewalskii (Caryophyllaceae):indications of multiple glacial refugia in north-western China[J].Australian Journal of Botany,2012,60(60):20-31.
[7] 唐欣,李新蓉.荒漠孑遗植物裸果木的开花物候特征[J].植物学报,2017,52(4):487-495.
[8] 巴哈尔古丽,汪志军,郭仲军.珍稀濒危植物裸果木地理分布与资源现状[J].中国野生植物资源,2005,24(5):39-40.
[9] Elith J,Leathwick J R.Species distribution models:ecological explanation and prediction across space and time[J].Annual Review of Ecology,Evolution,and Systematics,2009,40 (1):677-697.
[10] Anderson R P.A framework for using niche models to estimate impacts of climate change on species distributions[J].Annals of the New York Academy of Sciences,2013,1297(1):8-28.
[11] Ranc N,Santini L,Rondinini C,et al.Performance tradeoffs in target-group bias correction for species distribution models[J].Ecography,2017,40:1076-1087.
[12] 许仲林,彭焕华,彭守璋.物种分布模型的发展及评价方法[J].生态学报,2015,35(2) :557-567.
[13] 杨霞,郑江华,穆晨,等.气候变化下骆驼刺潜在地理分布区预测[J].中国中药杂志,2017,42(3):450-455.
[14] 马松梅,张明理,陈曦.沙冬青属植物在亚洲中部荒漠区的潜在地理分布及驱动因子分析[J].中国沙漠,2012,32(5):1301-1307.
[15] 赵泽芳,卫海燕,郭彦龙,等.黑果枸杞(Lycium ruthenicum)分布对气候变化的响应及其种植适宜性[J].中国沙漠,2017,37 (5):1084-1091.
[16] 常红,刘彤,王大伟,等.气候变化下中国西北干旱区梭梭(Haloxylon ammodendron)潜在分布[J].中国沙漠,2019,39(1):110-118.
[17] Grenouillet G,Buisson L,Casajus N,et al.Ensemble modelling of species distribution:the effects of geographical and environmental ranges[J].Ecography,2011,34(1):9-17.
[18] Araújo M B,New M.Ensemble forecasting of species distributions[J].Trends in Ecology & Evolution,2007,22(1):42-47.
[19] 徐振朋,张佳琦,宛涛,等.孑遗植物裸果木历史分布格局模拟及避难区研究[J].西北植物学报,2017(10):192-199.
[20] 狄林楠,李新蓉,宋楠.基于SCoT分子标记的裸果木遗传多样性分析[J].植物研究,2018(5):725-732.
[21] 刘辉,张佳琦,石文宏,等.不同种群裸果木与土壤化学计量学特征沿经度梯度变化的研究[J].草原与草业,2017,29(4):55-61.
[22] Mod H K,Scherrer D,Luoto M,et al.What we use is not what we know:environmental predictors in plant distribution models[J].Journal of Vegetation Science,2016,27:1308-1322.
[23] 郭彦龙,李新,赵泽芳,等.黑河流域胡杨适宜生境分布模拟[J].中国科学(地球科学),2019,49(3):55-71.
[24] Márquez A L,Real R,Olivero J,et al.Combining climate with other influential factors for modelling the impact of climate change on species distribution[J].Climatic Change,2011,108(1/2):135-157.
[25] Hijmans R J,Cameron S E,Parra J L,et al.Very high resolution interpolated climate surfaces for global land areas[J].International Journal of Climatology,2005,25(15):1965-1978.
[26] Fick S E,Hijmans R J.Worldclim 2:New 1-km spatial resolution climate surfaces for global land areas[J].International Journal of Climatology,2017,37(12):22-29.
[27] Wieder W R,Boehnert J,Bonan G B,et al.Regridded Harmonized World Soil Database v1.2.Data set[D/OL].[http://daac.ornl.gov].
[28] Yang X Q,Kushwaha S P S,Saran S,et al.Maxent modeling for predicting the potential distribution of medicinal plant,Justicia adhatoda L.in Lesser Himalayan foothills[J].Ecological Engineering,2013,51(1):83-87.
[29] Thuiller W,Lafourcade B,Engler R,et al.BIOMOD:a platform for ensemble forecasting of species distributions[J].Ecography,2009,32(3):369-373.
[30] 吴艺楠,马育军,刘文玲,等.基于BIOMOD 的青海湖流域高原鼠兔分布模拟[J].动物学杂志,2017,52(3):390-402.
[31] Crase B,Liedloff A,Vesk P A,et al.Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts[J].Global Change Biology,2014,20:2566-2579.
[32] 赵泽芳,卫海燕,郭彦龙,等.人参潜在地理分布以及气候变化对其影响预测[J].应用生态学报,2016,27(11):3607-3615.
[33] 张文生,于廷照.Boosting算法理论与应用研究[J].中国科学技术大学学报,2016(3):222-230.
[34] Phillips S J,Anderson R P,Dudík M,et al.Opening the black box:an open-source release of Maxent[J].Ecography,2017,40:887-893.
[35] Bradter U,Kunin W E,Altringham J D,et al.Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm[J].Methods in Ecology and Evolution,2013,4(2):167-174.
[36] 徐振朋,宛涛,蔡萍,等.裸果木种群遗传多样性及其与土壤因子的关联性研究[J].生态环境学报,2017,26(9):1473-1479.
[37] 姚俊强,杨青,陈亚宁,等.西北干旱区气候变化及其对生态环境影响[J].生态学杂志,2013,32(5):1283-1291.
[38] Li X R,Zhang Z S,Zhang J G,et al.Association between vegetation patterns and soil properties in the Southeastern Tengger Desert,China[J].Arid Soil Research and Rehabilitation,2004,18(4):369-383.
文章导航

/