Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2013, Vol. 33 Issue (3): 777-781    DOI: 10.7522/j.issn.1000-694X.2013.00112
Biology and Soil     
Desert Soil Organic Carbon Characterized by the Vertical Distribution of Soil Microbial Carbon
FANG Fei1,2, HU Yu-kun1, GONG Yan-ming1,2, YANG Xiu-juan1,2, LIU Yan-yan1
1.Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2.Graduate University, Chinese Academy of Sciences, Beijing 100049, China
Download:  PDF (1608KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The goal of the present research was to analyze the response relation of soil organic carbon (SOC)to soil microbial carbon (SMC) at different depths of original salt desert in the southern boundary of the Garbantunggut Desert. The results showed that: In the soil vertical profile, SMC and SOC presented a significant positive linear correlation (R2=0.63, p=0.0003). SMC exhibited two obvious changed-interfaces, 20 cm and 80 cm, the SMC at the depth of 0-20 cm, 20-80 cm and 80-500 cm was 2.24-3.06, 0.19-0.72, and 0.0017-0.0097 mg\5kg-1 , respectively; the SMC at 0-20 cm and 20-80 cm were significant different (p<0.0001), that at 20-80 cm and 80-500 cm were also significant different (p=0.013). Corresponding to the soil division based on SMC, the SOC also had some certain stratification. We defined organic carbon layers with different microbial activity as active, inert, and stable organic carbon library. The soil microbial carbon in the vertical profile presented a good characterization of the distribution of the active, inert, and stable organic carbon library. Therefore, these three kinds of organic carbon library can be quantified by reasonable analyzing their locations at different depths of soil vertical profile.

Key words:  soil organic carbon      soil microbial carbon      labile organic carbon library      inert organic carbon library      stable organic carbon library     
Received:  13 August 2012      Published:  01 November 2012
ZTFLH:  S154.1  

Cite this article: 

FANG Fei1,2, HU Yu-kun1, GONG Yan-ming1,2, YANG Xiu-juan1,2, LIU Yan-yan1. Desert Soil Organic Carbon Characterized by the Vertical Distribution of Soil Microbial Carbon. JOURNAL OF DESERT RESEARCH, 2013, 33(3): 777-781.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2013.00112     OR     http://www.desert.ac.cn/EN/Y2013/V33/I3/777

[1]Kirk J L,Beaudette L A,Hart M,et al.Methods of studying soil microbial diversity[J].Journal of Microbiological Methods,2004,58:169-1881.

[2]贾国梅,方向文,刘秉儒,等.黄土高原弃耕地自然恢复过程中微生物碳的大小和活性的动态[J].中国沙漠,2006,26(4):580-584.

[3]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):61-69.

[4]Jenkinson D S.Determination of microbial biomass carbon and nitrogen in soil[M]/Wilson J R.Advances in Nitrogen Cycling in Agriculture Ecosystems.Wallingford,UK:CAB International,1988:368-386.

[5]Wander M M,Traina S J,Stinner B R,et al.Organic and conventional management effects on biologically active soil organic matter pools[J].Soil Science Society of America Journal,1994,58:1130-1139.

[6]俞慎.土壤微生物作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):413-421.

[7]李东坡.长期培肥黑土微生物碳动态变化及影响因素[J].应用生态学报,2004,15(8):1334-1338.

[8]张国,曹志平,胡婵娟.土壤有机碳分组方法及其在农田生态系统研究中的应用[J].应用生态学报,2011,22(2):1921-1930.

[9]Parton W J,Scurlock, J M O,Ojima D S,et al.Observations and modeling of biomass and soil organic matter dynamics for the grasslands biome world-wide[J].Global Biogeochemical Cycles,1993,7(4):785-809.

[10]Fran H,Dan M,Jessica S.Labile carbon[EB/OL].[2012-01-06].http:/soilquality.org.au/factsheets/labile-carbon

[11]崔永琴,马剑英,刘小宁,等.人类活动对土壤有机碳库的影响研究进展[J].中国沙漠,2011,31(2):407-414.

[12]王玉刚,肖笃宁,李彦,等.三工河流域绿洲土壤有机碳的空间分布[J].中国沙漠,2011,31(1):101-107.

[13]Xie J X,Li Y,Zhai C X,et al.CO2 absorption by alkaline soils and its implication to the global carbon cycle[J].Environmental Geology,2009,56(5):953-961.

[14]刘冉,李彦,王勤学,等.盐生荒漠生态系统二氧化碳通量的年内、年际变异特征[J].中国沙漠,2011,31(1):108-114.

[15]钟德才.中国沙海动态演化[M].兰州:甘肃文化出版社,1998.

[16]钱亦兵, 吴兆宁.古尔班通古特沙漠环境研究[M].北京:科学出版社,2010.

[17]杨海峰,钱亦兵,蒋超,等.古尔班通古特沙漠南缘主要土壤化学特征的空间异质性[J].中国沙漠,2010,30(2):319-325.

[18]Brookes P C,Landman A, Jenkinson D S.Chloroform fumigation and release of soil N:a rapid direct extraction method to measure microbial biomass N in soil[J].Soil Biology and Biochemistry,1985,17:837-842.

[19]John B,Yamashita T,Ludwig B,et al.Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use[J].Geoderma,2005,128(1/2):63-79.

[20]王晶,张旭东,谢宏图,等.现代土壤有机质研究中新的量化指标概述[J].应用生态学报,2003,14(10):1809-1812.

[21]Balesdent J,Mariotti A,Boisgontier D.Effect of tillage on soil organic mineralization estimated from 13C abundance in maize fields[J].European Journal of Soil Science,1990,41(4):587-596.

[22]刘微,吕豪豪,陈英旭,等.稳定碳同位素技术在土壤植物系统碳循环中的应用[J].应用生态学报,2008,19(3):674-680.

[23]刘启明,王世杰,朴河春,等.稳定碳同位素示踪农林生态转换系统中土壤有机质的迁移和赋存规律[J].环境科学,2002,23(3):75-78

[24]李晨华,李彦,唐立松,等.盐化灰漠土开垦前后碳存贮与碳释放的分层特征[J].干旱区研究,2010,27(3):385-391.

[25]Ladd J N,Oades J M,Amato M.Microbial biomass formed from 14C,15N-labelled plant material decomposing in soils in the field [J].Soil Biology and Biochemistry,1981,13:119-126.

[26]周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳储量的影响[J].地理学报,2003,58(5):727-734.

[27]Melillo J M,Steudler P A,Aber J D,et al.Soil warming and carbon-cycle feedbacks to the climate system[J].Science,2002,298:2173-2176.

[28]Fontaine S,Barot S,Barre P,et al.Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J].Nature,2007,450:277-280.

[29]Wu J,Joergensen R G,Pommerening B,et al.Measurement of soil microbial biomass C by fumigation-extraction an automated procedure[J].Soil Biology and Biochemistry,1990,22(8):1167-1169.

[30]党亚爱,李世清,王国栋,等.黄土高原典型土壤有机碳和微生物碳分布特征的研究[J].自然资源学报,2007, 22(6):936-945.

[31]贾晓红,周海燕,李新荣.无灌溉人工固沙区土壤有机碳及氮含量变异的初步结论[J].中国沙漠,2004,24(4):437-441.

No Suggested Reading articles found!